Computer Science, asked by mmuthumani678, 4 months ago

the sides of a triangle are in the ratio 3:5:7: and its perimeter is 150 metre find its area​

Answers

Answered by anjanakurup728
5

\huge{\pink{\underline{\underline{Answer:-}}}}

Given:

Ratio of sides of triangle = 3:5:7

Perimeter = 150 meter

To Find:

Area of triangle = ?

Solution:

Let the sides of triangle be

a = 3x, b = 5x, c = 7x

Perimeter of triangle is equal to addition of all sides of triangle [a+b+c]

 \\ Perimeter \: \:  = 3x + 5x + 7x \\  \\  150 = 15x \\  \\  \dfrac{150}{15}  = x \\  \\ 10 = x

 \\ Substituting \:  \: value \:  \: of \:  \: x \\  \\ a = 3x = 3 \times 10 = 30 \: m \\  \\ b = 5x = 5 \times 10 = 50 \: m \\  \\ c = 7x = 7 \times 10 = 70 \: m

 \\ Using \:  Herons  \: Formula \\  \\ semiperimeter \:  =  \dfrac{perimeter}{2}  \\  \\  =  \dfrac{150}{2}  \\  \\  = 75 \: cm

 \\ Area \: of \: triangle \:  =  \\  \sqrt{s(s - a)(s - b)(s - c)} \\  \\ s \: \:  is \: \:  semiperimeter \\  \\ a,b \: \:  and \: c \: \:  are \:  \: sides \:  \: of \: triangle

 \\ Area \:  = \\   \sqrt{75(75 - 30)(75 - 50)(75 - 70)}  \\  \\  =  \sqrt{75(45)(25)(5)}  \\  \\   = \sqrt{421875}   \\ \\  = 375 \sqrt{3}  \: m {}^{2}

 \\  \\  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  649.52 \: m {}^{2}

Required answer:

Therefore, area of triangle is 3753 m² or 649.52 m²

Similar questions