Math, asked by pknajmunnisa6, 1 month ago

The sides of a triangle are in the ratio 3:5:7 and its perimeter is 45 cm. What are the
lengths of the sides?

Answers

Answered by Yugant1913
15

The length of the sides be 9cm, 15cm, 21cm

Step-by-step explanation:

 \underline \frak{Given}  :

  • Triangle are in the ratio 3 : 5 : 7

  • Perimeter of triangle = 45cm

 \underline \frak{T o \:  find }:

  • The length of the sides ?

 \underline{ \underline \frak{ \green{ \underline{ \underline{Solution : }}}}}

Let the sides of the triangle be

  • 1st side = 3x

  • 2nd side = 5x

  • 3rd side = 7x

 \red{ \frak{ According  \: to \:  question }}

 \longrightarrow\sf \: 3x + 5x + 7x = 45

 \sf \longrightarrow15x = 45

 \sf \:  \longrightarrow \: x =  \frac{ \cancel{45}}{ \cancel{15}} \\

  \qquad{ } \boxed{ \frak{ \longrightarrow \: x = 3}}

Hence,

 \tt {1}^{st}  \: side \:  3x\\  \tt  \longrightarrow\: 3 \times 3 \\  \tt \longrightarrow \frak{9 \: cm}

 \tt {2}^{nd}  \: side \: 5x \\  \tt \:  \longrightarrow5 \times 3 \\  \tt \longrightarrow \frak{15 \: cm}

 \tt {3}^{rd}  \: side \:7x \\  \longrightarrow \tt7 \times 3 \\   \tt \longrightarrow \frak{21 \: cm}

Therefore the length of the sides be

  • 1st side = 9cm
  • 2nd side = 15cm
  • 3rd side = 21cm

Answered by divyabachchani80
1

perimeter of the triangle =60cm

3x+5x+7x=60

⇒15x=60

⇒x=60/15

⇒x=4

3x=3×4=12cm

5x=5×4=20cm

7x=7×4=28cm

S= 1/2(a+b+c)

= 1/2×60

=30

Area = 30(30−12)(30−20)(30−28)

= 30×8×10×2

= 60×180

= 10800

= 3600×3

=60 ÷ 3cm ²

Area of triangle =60 ÷3cm²

Hope it helps ❤️

Similar questions