Math, asked by navdeepmandhan, 4 days ago

The sides of a triangle are in the ratio 3:5:7 and its
perimeter is 75 cm, then the length of longest altitude is

Attachments:

Answers

Answered by kamlaprajapati1978
2

Answer:

is this is a question of herons formula

sorry I don't have time so by easy method my answer is 5 cm

Answered by Raghav1330
0

Given:

The sides of a triangle are in the ratio of 3:5:7

The perimeter of the triangle is 75cm.

To Find:

The length of the longest altitude of the triangle.

Solution:

Let the three sides of the triangle be 3x, 5x, 7x.

The perimeter of the triangle = Sum of the three sides

                                     75cm  = 3x + 5x + 7x

                                      75cm = 15x

                                             x = 75/15

                                             x = 5

So, the sides of a triangle = 15 + 25 + 35

Now, Area of the triangle = \sqrt{s(s-a)(s-b)(s-c)}

                                          = \frac{15 + 25 + 35}{2}

                                          = \frac{75}{2}

                                          = \sqrt{\frac{75}{2}*\frac{45}{2}*\frac{35}{2}*\frac{5}{2}    }

                                          = \frac{375}{4}\sqrt{3}

The length of the longest altitude = \frac{2(area of triangle)}{smallest base}

                                                         = \frac{2*\frac{375}{4}\sqrt{3}  }{15}

                                                         = \frac{375}{30}\sqrt{3}

                                                         = \frac{25}{2}\sqrt{3}

Therefore, the length of the altitude = \frac{25}{2}\sqrt{3}  .

Similar questions