Math, asked by ayokayoklar, 3 months ago


The sides of a triangle are in the ratio 3:57
I and its perimeter is 600m find the area of
triangle​

Answers

Answered by BrainlyRish
6

Appropriate Question :

  • The Sides of Triangle are in the ratio 3:5:7 and it's Perimeter is 600 m . Find the Area of Triangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : The Sides of Triangle are in the ratio 3:5:7 & Perimeter of Triangle is 600 m .

Exigency to find : Area of Triangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the three sides of Triangle be 3x , 5x & 7x .

⠀⠀⠀⠀⠀Finding Three Sides of Triangle :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Perimeter _{(Triangle)} \:: a + b + c  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here a , b & c are three sides of Triangle & we know that Perimeter of Triangle is 400 m .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf 3x + 5x + 7x = 600 \\\\

\qquad \longmapsto \sf 8x + 7x = 600 \\\\

\qquad \longmapsto \sf 15x = 600 \\\\

\qquad \longmapsto \sf x =\cancel {\dfrac{600}{15}} \\\\

\qquad \longmapsto \frak{\underline{\purple{\:x = 40m }} }\bigstar \\

Therefore,

  • a or First Side is 3x = 3(40) = 120 m
  • b or Second Side is 5x = 5(40) = 200 m
  • c or Third side is 7x = 7(40) = 280 m

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Three \:Side\:of\:Triangle \:are\:\bf{ 120m\:200m\:\&\:280m}}}}\\

⠀⠀⠀⠀⠀ Finding Semi-Perimeter of Triangle for Finding Area of Triangle :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Semi-Perimeter _{(Triangle)} \:: \dfrac{Perimeter}{2} }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here Perimeter of Triangle is 600 m .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf Semi-Perimeter \:= \dfrac{600}{2}\\

\qquad \longmapsto \sf Semi-Perimeter \:= \cancel {\dfrac{600}{2}}\\

\qquad \longmapsto \frak{\underline{\purple{\:Semi-Perimeter \:= 300 \: m }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Semi-Perimeter \:of\:Triangle \:is\:\bf{300\:m}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀ Finding Area of Triangle :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Area _{(Triangle)} \:: \sqrt { s (s - a)  (s - b)   (s - c)}  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here a , b & c are three sides of Triangle & s is the Semi-Perimeter of Triangle.

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf  \sqrt { 300 (300 - 120) (300 - 200)   (300 - 280)} \\

\qquad \longmapsto \sf  \sqrt { 300 (180)  (300 - 200)   (300 - 280)} \\

\qquad \longmapsto \sf  \sqrt { 300 (180) \times (100)  \times (20)} \\

\qquad \longmapsto \sf  \sqrt { 300 \times 18,000  \times 20} \\

\qquad \longmapsto \sf  \sqrt { 6,000 \times 18,000  } \\

\qquad \longmapsto \sf  \sqrt { 10,80,00,000  } \\

\qquad \longmapsto \frak{\underline{\purple{\:Area =6000 \sqrt {3} m ^2  }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Area \:of\:Triangle \:is\:\bf{  6000 \sqrt {3} \:m^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
86

Given:

  • The sides of a triangle are in the ratio 3:5:7
  • Perimeter of the triangle is 600m.

To find:

  • Area of triangle?

Solution:

• Let's consider ABC is a triangle.

Where,

  • A = 3x
  • B = 5x
  • C = 7x

• Let angle in common be x.

⠀⠀━━━━━━━━━━━━━━━━━━━⠀

« Now, By using perimeter of triangle formula,

Perimeter of triangle = a + b + c

→ 3x + 5x + 7x = 600

→ 15x = 600

→ x = 600/15

→ x = 40

Thus, The sides of the triangle are 120m,200m & 280m.

⠀⠀━━━━━━━━━━━━━━━━━━━⠀

« Now, Let's Find Area of triangle by using herons formula,

As we know that,

√s(s - a)(s - b)(s - c)

  • Side = 120 + 200 + 280/2 = 300

→ √300(300 - 120)(300 - 200)(300 - 280)

→ √300(180)(100)(20)

→ √300(360000)

→ √108000000

→ 6000√3

∴ Hence, Area of of the triangle is 6000√3.

Similar questions