Math, asked by dhibarriya2, 9 months ago

The sides of a triangle are in the ratio 5:12:13 and its perimeter is 150m. Find the area of the triangle

Answers

Answered by kuldeep20941
9

Answer:

Area Of Triangle = 750 \:  \: m

Step-by-step explanation:

=====================================

See The Attachment My Friend....

=====================================

Attachments:
Answered by Anonymous
15

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The sides of a triangle are in the ratio 5:12:13 and it's perimeter is 150 m.

\bf{\red{\underline{\bf{To\:find\::}}}}

The area of the triangle.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the ratio of the side of triangle be r

  • 5r
  • 12r
  • 13r

We know that formula of the perimeter of triangle :

\boxed{\bf{Perimeter=side+side+side}}}}}

A/q

\longrightarrow\sf{5r+12r+13r=150}\\\\\longrightarrow\sf{30r=150}\\\\\longrightarrow\sf{r=\cancel{\dfrac{150}{30} }}\\\\\\\longrightarrow\sf{\purple{r=5\:m}}

\bullet\sf{1_{st}\:side\:of\:\triangle=5r=(5\times 5)m=\boxed{\sf{25m}}}}\\\bullet\sf{2_{nd}\:side\:of\:\triangle=12r=(12\times 5)m=\boxed{\sf{60m}}}}\\\bullet\sf{3_{rd}\:side\:of\:\triangle=13r=(13\times 5)m=\boxed{\sf{65m}}}}

\underline{\underline{\bf{Using\:Heron's\:formula\::}}}}}

We have 3 side :

a = 25 m , b = 60 m and c = 65 m

\longrightarrow\tt{Semi-perimeter=\dfrac{Sum\:of\:side}{2} }\\\\\\\longrightarrow\tt{Semi-perimeter=\dfrac{a+b+c}{2} }\\\\\\\longrightarrow\tt{Semi-perimeter=\dfrac{25m+60m+65m}{2} }\\\\\\\longrightarrow\tt{Semi-perimeter=\cancel{\dfrac{150}{2}} m}\\\\\\\longrightarrow\tt{\purple{Semi-perimeter=75\:m}}

Now;

\boxed{\bf{Area\:of\:\triangle=\sqrt{s(s-a)(s-b)(s-c)} }}}

\mapsto\tt{Area\:_{triangle}=\sqrt{75(75-25)(75-60)(75-65)}} \\\\\mapsto\tt{Area\:_{triangle}=\sqrt{75(50)(15)(10)}} \\\\\mapsto\tt{Area\:_{triangle}=\sqrt{562500} }\\\\\mapsto\tt{\purple{Area\:_{triangle}=750\:m^{2} }}

Thus;

\dag\underbrace{\sf{The\:area\:of\:triangle=750\:m^{2} }}}}

Similar questions