Math, asked by aditidineshmaurya, 4 days ago

The sides of a triangle are in the ratio 5:12:13 and its perimeter 150 m find the area of the triangle. is​

Answers

Answered by EuphoricBunny
47

☘️ Given :

  • Ratio of the sides of the triangle = 5:12:13
  • Perimeter = 150 m

_____________________

☘️ To find :

  • Area of the triangle.

_____________________

☘️ Solution :

Let the sides of the triangle be 5x, 12x and 13x

So,

Perimeter of triangle = a + b + c

→ 5x + 12x + 13x = 150m

→ 30x = 150

→ x = 150/30

x = 5

So, the sides of the triangle are :

  • 5x = 5 × 5 = 25
  • 12x = 12 × 5 = 60
  • 13x = 13 × 5 = 65

So, a = 25, b = 60 and c = 65.

\\ \sf  \purple{s \:  =  \:  \dfrac{a + b + c}{2} } \\  \\ \sf  \implies \:  \dfrac{25 + 60 + 65}{2} \: \\  \\ \sf  \implies \:  \:  \frac{150}{2}    =  \purple{ 75 \: m }\\

Area of triangle :

  • Using Heron's formula:

\bf  \pink{Area \:  =  \:  \sqrt{s(s - a)(s - b)(s - c)}}  \\  \\  \twoheadrightarrow \tt Area \:  =  \: \sqrt{75(75 - 25)(75 - 60)(75 - 65)}   \\ \twoheadrightarrow \tt Area \:  =  \: \sqrt{70 \times 50 \times 15 \times 10}  \\ \twoheadrightarrow\tt Area \:  =  \: \sqrt{25 \times 3 \times 25 \times 2 \times 5 \times 3 \times 5 \times 2} \\  \ \twoheadrightarrow\tt Area \:  =  \: \sqrt{25 \times 25 \times 5 \times 5 \times 3 \times 3 \times 2  \times 2} \\   \twoheadrightarrow\tt Area \:  =  \:25 \times 5 \times 3 \times 2 \\  \purple{\twoheadrightarrow\bf Area \:  =  \:750 \: sq. \: m} \\

.°. Area of the triangle = 750 sq. m.

\\

☘️ Answer :

  • Area of the triangle = 750 sq. m.
Similar questions