Math, asked by RUQAYAH, 5 months ago

The sides of a triangle are in the ratio of 3:5: 7. If the perimeter of
the triangle is 60 cm, then its area is
[
a) 603 sq.cm. b) 30/3 sq.cm c) 15 3 sq.cm d) 1203 sq.cm
:​

Answers

Answered by EliteZeal
73

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Sides of a triangle are in the ratio of 3:5:7

  • Perimeter of the triangle is 60 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of the triangle

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Given that the sides of a triangle are in the ratio of 3:5:7

 \:\:

So,

 \:\:

Let the sides be 3x , 5x , 7x

 \:\:

Also given that the perimeter is 60 cm

 \:\:

So,

 \:\:

➜ 3x + 5x + 7x = 60

 \:\:

➜ 15x = 60

 \:\:

➜ x = 4

 \:\:

So the sides are -

 \:\:

  • 3x = 3(4) = 12 cm

  • 5x = 5(4) = 20 cm

  • 7x = 7(4) = 28 cm

 \:\:

 \underline{\bold{\texttt{Area of triangle :}}}

 \:\:

 \sf  \sqrt { s(s - a)(s - b)(s - c) } ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • a = 1st Side

  • b = 2nd Side

  • c = 3rd Side

  • s = Semi Perimeter

 \:\:

  • s =  \sf \dfrac { a + b + c } { 2 }

 \:\:

 \underline{\bold{\texttt{Area of given triangle :}}}

 \:\:

  • a = 12

  • b = 20

  • c = 28

  • s =  \sf \dfrac { 12 + 20 + 28 } { 2 }

 \:\:

 \sf s = \dfrac { 60 } { 2 }

 \:\:

  • s = 30

 \:\:

Putting the above values in ⓵

 \:\:

 \sf  \sqrt { s(s - a)(s - b)(s - c) }

 \:\:

 \sf  \sqrt { 30(30 - 12)(30 - 20)(30 - 28) }

 \:\:

 \sf  \sqrt { 30(18)(10)(2) }

 \:\:

 \sf  \sqrt { 300(36) }

 \:\:

 \sf 6 \sqrt { 2 \times 2 \times 3 \times  5 \times 5 }

 \:\:

 \sf 6 \times 2 \times 5 \sqrt 3

 \:\:

 \sf 60 \sqrt 3

 \:\:

➜ 103.9

 \:\:

➨ 104 sq. cm. approx

 \:\:

Hence the area of given triangle is 104 sq. cm.

Similar questions