Math, asked by jfssyzh, 1 month ago

The sides of a triangle are in the ratio of12:17:25 and its perimeter is 540 cm. find its area:
a)6000
b)9000
c)12000
d)None of these

Answers

Answered by SparklingBoy
217

Given :-

For A Triangle ;

  • Sides are in Ratio 12 : 17 : 25

  • Perimeter = 540 cm

To Find :-

  • Area of the Triangle.

Solution :-

As Sides are in Ratio 12 : 17 : 25 ;

Let,

  • First Side = a = 12x

  • Second Side = b = 17x

  • Third Side = c = 25x

Finding All Sides :-

We Know,

 \rm Perimeter = Sum \: of \: All \: Sides \\

 \rm:\longmapsto540 = 12x + 17x + 25x \\

 \rm:\longmapsto 54x = 540 \\

\purple{ \large :\longmapsto \underline {\boxed{{\bf x = 10} }}}

Therefore,

  • First Side = a = 120 cm

  • Second Side = b = 170 cm

  • Third Side = c = 250 cm

Also

  • Semi Perimeter = s = 270 cm

Finding Area :-

To Calculate Area when three sides are given we will use Heron's Formula which is :

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{Area = \sqrt{s(s - a)(s - b)(s - c)} }}} \\

where

  • a , b and c are sides of Triangle

  • s = Semi - Perimeter

Putting Values In Formula ;

 \small \rm Area = \sqrt{270(270 - 120)(270 - 170)(270 - 250) \: } \\

= \sqrt{270 \times 150 \times 100 \times 20 \: } \\

= \sqrt{81000000 \: } \\

\purple{ \large :\longmapsto \underline {\boxed{{\bf Area=9000 \: cm^2} }}} \\

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Area\:of\:\text Triangle = 9000 \: {cm}^{2} }}}}}

Therefore ,

\Large\underline{\green{\underline{\frak{\pmb{Option \: B \: is \: Correct}}}}}

Answered by Anonymous
145

Answer:

Given :-

  • The sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540 cm.

To Find :-

  • What is the area of triangle.

Solution :-

First, we have to find the sides of all triangle :

Let,

\mapsto \bf First\: Side_{(Triangle)} =\: 12a\: cm

\mapsto \bf Second\: Side_{(Triangle)} =\: 17a\: cm

\mapsto \bf Third\: Side_{(Triangle)} =\: 25a\: cm

As we know that :

\footnotesize\bigstar\: \: \sf\boxed{\bold{\pink{Perimeter_{(Triangle)} =\: Sum\: Of\: All\: Sides}}}\: \: \bigstar

According to the question by using the formula we get,

\implies \sf 12a + 17a + 25a =\: 540

\implies \sf 29a + 25a =\: 540

\implies \sf 54a =\: 540

\implies \sf a =\: \dfrac{\cancel{540}}{\cancel{54}}

\implies \sf a =\: \dfrac{10}{1}

\implies \sf\bold{\purple{a =\: 10}}

Hence, the required sides of a triangle are :

First Side Of Triangle :

\implies \sf First\: Side_{(Triangle)} =\: 12a

\implies \sf First\: Side_{(Triangle)} =\: (12 \times 10)\: cm

\implies \sf\bold{\green{First\: Side_{(Triangle)} =\: 120\: cm}}

Second Side Of Triangle :

\implies \sf Second\: Side_{(Triangle)} =\: 17a

\implies \sf Second\: Side_{(Triangle)} =\: (17 \times 10)\: cm

\implies \sf\bold{\green{Second\: Side_{(Triangle)} =\: 170\: cm}}

Third Side Of Triangle :

\implies \sf Third\: Side_{(Triangle)} =\: 25a

\implies \sf Third\: Side_{(Triangle)} =\: (25 \times 10)\: cm

\implies \sf\bold{\green{Third\: Side_{(Triangle)} =\: 250\: cm}}

Now, we have to find the semi-perimeter of a triangle :

As we know that :

\footnotesize\bigstar\:  \: \sf\boxed{\bold{\pink{Semi-Perimeter_{(Triangle)} =\: \dfrac{Sum\: Of\: All\: Sides}{2}}}}\: \: \bigstar

Given :

  • First Side (a) = 120 cm
  • Second Side (b) = 170 cm
  • Third Side (c) = 250 cm

According to the question by using the formula we get,

\small\leadsto \bf Semi-Perimeter_{(Triangle)} =\: \dfrac{a + b + c}{2}

\small\leadsto \sf Semi-Perimeter_{(Triangle)} =\: \dfrac{120 + 170 + 250}{2}

\small\leadsto \sf Semi-Perimeter_{(Triangle)} =\: \dfrac{\cancel{540}}{\cancel{2}}

\small\leadsto \sf Semi-Perimeter_{(Triangle)} =\: \dfrac{270}{1}

\small\leadsto \sf\bold{\blue{Semi-Perimeter_{(Triangle)} =\: 270\: cm}}

Now, we have to find the area of a triangle :

As we know that :

\small\footnotesize\bigstar\: \: \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}}}}\: \: \bigstar

Given :

  • Semi-Perimeter = 270 cm
  • First Side (a) = 120 cm
  • Second Side (b) = 170 cm
  • Third Side (c) = 250 cm

According to the question by using the Heron's Formula we get,

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{270(270 - 120)(270 - 170)(270 - 250)}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{270(150)(100)(20)}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{270 \times 150 \times 100 \times 20}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{81000000}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{\underline{9000 \times 9000}}

\small\longrightarrow \sf\bold{\red{Area_{(Triangle)} =\: 9000\: cm}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: the\: triangle\: is\: 9000\: cm\: .}}}}

Hence, the correct options is option no (b) 9000 cm .

Similar questions