the sides of a triangular are x, x+1,2x-1 and its area is x^10
codeist:
What do we have to find in this question, please specify?
Answers
Answered by
2
area = root over s (s-a)(s-b)(s-c)
where s=(a+b+c)/2=(x+x+1+2x-1)/2 =2x
so s-a=2x-x=x
s-b=2x-x-1=x-1
s-c=2x-2x+1=1
so root over s (s-a)(s-b)(s-c)
=root over 2x*x*(x-1)*1
so x^10=root 2x^2 (x-1)
or x^20= 2x^2 (x-1)
solve for x ...and find the values of each sides
where s=(a+b+c)/2=(x+x+1+2x-1)/2 =2x
so s-a=2x-x=x
s-b=2x-x-1=x-1
s-c=2x-2x+1=1
so root over s (s-a)(s-b)(s-c)
=root over 2x*x*(x-1)*1
so x^10=root 2x^2 (x-1)
or x^20= 2x^2 (x-1)
solve for x ...and find the values of each sides
Similar questions