Math, asked by manimayu13223, 22 hours ago

The sides of a triangular farm are 120 m, 120 m and 192 m. What will be the expenditure of removing the grass in it at the rate of 25 ps.per square meter​

Answers

Answered by Anonymous
63

Given :

  • The sides of a triangular farm are 120 m, 120 m and 192 m. Cost of removing the grass is 25 per m² .

\rule{200pt}{3pt}

To Find :

  • Expenditure of removing the grass.

\rule{200pt}{3pt}

Solution :

Formula Used :

\large{\star \: {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle) }} = \sqrt{s (s - a) (s - b) (s - c) }}}}}}} \: {\star}

Where :

  • ➻ S = Semi - Perimeter
  • ➻ a = side 1
  • ➻ b = Side 2
  • ➻ c = Side 3

\qquad{\rule{150pt}{1pt}}

Calculating the Area of Triangular farm :

  • Semi - Perimeter :

{:\implies{\qquad{\sf{ S = \dfrac{a + b + c}{2} }}}} \\ \\ \ {:\implies{\qquad{\sf{ S = \dfrac{ 120 + 120 + 192 }{2} }}}} \\ \\ \ {:\implies{\qquad{\sf{ S = \cancel\dfrac{432}{2} }}}} \\ \\ \ {\qquad{\sf{ Semi - Perimeter \: of \: the \: farm \: = {\blue{\sf{ 216 \: m}}}}}}

\qquad{\rule{150pt}{1pt}}

  • Area :

{:\longmapsto{\qquad{\rm{ Area = \sqrt{s (s - a) (s - b) (s - c) }}}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Area = \sqrt{216 (216 - 120) (216 - 120) (216 - 192) }}}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Area = \sqrt{216 \times 96 \times 96 \times 24 }}}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Area = \sqrt{ 12 \times 18 \times 12 \times 8 \times 12 \times 8 \times 12 \times 2 }}}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Area = 3456 \sqrt{6} }}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Area = 3456 \times 2.449 }}}} \: \: \: {\bigg\lgroup{\purple{\sf{ Taking \: \sqrt{6} = 2.449 }}} \bigg\rgroup } \\ \\ \ {\qquad{\textsf{ Area of the Triangular Farm = {\red{\sf{ 8463.8 (Approx.)  }}}}}}

\qquad{\rule{150pt}{1pt}}

Cost of Removing grass :

{:\longmapsto{\qquad{\rm{ Cost{\small_{(Removing \: Grass) }} = Area \times Rate }}}} \\ \\ \ {:\longmapsto{\qquad{\rm{ Cost{\small_{(Removing \: Grass) }} = 8463.8 \times 7 }}}} \\ \\ \ {\qquad{\textsf{ Cost of Removing grass from the field = {\green{\sf{ ₹ \: 59246.6(Approx.) }}}}}}

\qquad{\rule{150pt}{1pt}}

Therefore :

❝ Cost of Removing the grass from the field is 59246.6 (Approx.). ❞

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by ItzzTwinklingStar
35

Given :

  • The three sides of the triangular farm are 120m, 120m, and 192m.
  • The cost of removing the grass is 25 ps. per square meter.

to find:

  • the area of the triangular firm first.

formula used :

{ \underline{ \boxed{ \bf{ \red{s =  \sqrt{s(s - a)(s - b)(s - c)} }}}}}

{ \underline{ \boxed{ \bf{ \green{s =   \frac{ a+ b + c}{2} }}}}}

Solution:

first we will use heron's formula,

here ,

  • a = 120m
  • b = 120m
  • c = 192m.

semi perimeter of triangular farm

 :  \implies \sf \: s=\frac{a+b+c}{2} \\  \\

 :  \implies \sf \: s=\frac{120+120+192}{2} \\  \\

\bf\pink :  \implies  \: s=216 \: m \\  \\

then,

the area of triangular farm

 \sf :  \implies   \: s=  216\sqrt{(216 - 120)(216 - 120)(216 - 192)}\\\\

 \sf :  \implies   \: s=  6912 \: m\\\\

Now,

  • the cost of removing the grass is,

 \sf :  \implies \: 6912 \: m  {}^{2}  \times 25 \frac{ps}{ {m}^{2} }  \\  \\

 \sf :  \implies \: 172800 \: ps  \\  \\

 \sf :  \implies \: \: rs. 1728  \\  \\

hence,

  • the expenditure of removing the grass is rs.1728.

Similar questions