Math, asked by suhani1124, 1 month ago

The sides of a triangular field are 15 m, 20 m and 25 m. Find the area of

the triangle.​

Answers

Answered by SachinGupta01
18

\bf \underline{ \underline{\maltese\:Given} }

 \sf Sides  \: of  \: triangular  \: field  \: are  \: 15  \: m,  \: 20 \:  m \:  and  \: 25  \: m.

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies Area  \: of \:  triangular \:  field = \:  ?

\bf \underline{ \underline{\maltese\:Solution } }

 \sf Using  \: Heron's  \: formula :

\underline{\boxed{\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}

\bf \underline{ Now},

\sf \implies s \: = \: \dfrac{a + b + c}{2}

\sf \implies s \: = \: \dfrac{15 + 20 + 25}{2}

\sf \implies s \: = \:  \cancel{\dfrac{60}{2}}

\sf \implies s \: = \:  30

 \underline{ \sf \: Thus, \: semi-perimeter = 30\:m }

\bf \underline{Now}, \sf \: area \: of \: triangle :

\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}

\sf{Area = \sqrt{30(30 - 15)(30 - 20)(30- 25)}}

\sf{Area = \sqrt{30 \times 15 \times 10 \times 5}}

\sf{Area = \sqrt{2 \times 3 \times 5 \times 3 \times 5 \times 2 \times 5 \times 5}}

\sf{Area =   2 \times 3 \times 5 \times 5 }

\sf{Area =   150 \: m} ^{2}

 \underline{ \boxed{  \red{\bf \: Thus ,  \: area \:  of \:  triangle\: is\: 150 \:  m^2} }}

Answered by queen1234516
5

Answer:

Hello dear..

Good Evening

I am sanika

I am doing well✌

and u ?

In which class do you study?

Similar questions