Math, asked by gokulkrishna9973, 1 month ago

The sides of a triangular field are 225m, 375m, 300m. Each rose bed requires 750cm² of area. How many rose beds can be prepared in the field?​

Answers

Answered by OtakuSama
112

 \\  \large{ \underline{ \underline{ \sf{ \pmb{Question}}}}}

The sides of a triangular field are 225m, 375m, 300m. Each rose bed requires 750cm² of area. How many rose beds can be prepared in the field?

 \\  \large{ \underline{ \underline{ \sf{ \pmb{Required \: Answer}}}}}

 \\  \underline{ \underline{ \sf{ \frak{Given}}}}

  • Sides of a triangle field are 225m, 375m, 300m.
  • Each rose bed's area is 750cm²

 \\  \underline{ \underline{ \sf{ \frak{To \: Find}}}}

  • Number of rose beds can be prepared in the field.

\\  \underline{ \underline{ \sf{ \frak{Solution}}}}

Let,

  • 1st side of the triangle be a = 225m
  • 2nd side of the triangle be b = 375m
  • 3rd side of the triangle be c = 300m
  • Semi-perimeter of the triangle be s

We know that,

 \\  \underline{ \boxed{  \tt{ \color{navy}{s =  \dfrac{a + b + c}{2} }}}}

Therefore,

 \sf{\bold{s =  \dfrac{225 + 375 + 300}{2} m}}

 \\  \sf{ \implies{ \bold{s} =  \dfrac{900}{2} }}m

 \\ \therefore{ \sf{ \bold{s = 450m}}}

Again, from Heron's formula, we know that:-

 \\  \underline{ \boxed{ \tt{ \color{navy}{Area \: of \: triangle =   \sqrt{s(s - a)(s - b)(s - c)} square \: units}}}}

We have,

  • a = 225m
  • b = 375m
  • c = 300m
  • s = 450m

Substituting the values:-

 \\  \sf{ \bold{Area \: of \: the \: triangle \: field =  \sqrt{450(450 - 225)(450 - 375)(450 - 300)} squre \: meters}}

\\  \sf{ \implies{Area \: of \: the \: triangle \: field =  \sqrt{450 \times 225 \times 75 \times 150}  \: squre \: meters}}

\\  \sf{ \implies{Area \: of \: the \: triangle \: field =  \sqrt{1139062500}  \: squre \: meters}}

\\  \sf{ \therefore{Area \: of \: the \: triangle \: field =   \bold{33750 \: square \: meters}}}

Again, we were given,

  • Area of each road bed = 750cm²

We know that:-

  • 1 cm² = 0.0001

=> 750cm² = (0.0001 × 750)m² = 0.075

Now,

Number of rose beds can be prepared = Area of the triangle field / Area of each rose bed

=> Number of rose beds can be prepared = 33750 / 0.075

=> Number of rose beds can be prepared = 450,000

 \\  \underline{ \rm{ Hence \:  \green{ \bold{450,000}} \: rose \: beds \: can \: be \: prepared \: in \: the \: field. }}

Answered by subhasiskalita4
1

answer is 450,000

follow the above steps

Attachments:
Similar questions