Math, asked by mbindiap, 4 months ago

The sides of a triangular field are 35m, 50m and 110m. Find the
length of the wire required to fence the field.​

Answers

Answered by Anonymous
2

Answer:

Length of wire = perimeter of triangular field

i.e

35+50+110 = 195 m

Answered by Anonymous
8

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Question}}}

The sides of a triangular field are 35m, 50m and 110m. Find the length of the wire required to fence the field.

_____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Answer}}}

The sides of a triangular field are 35m, 50m and 110m. 195m the length of the wire required to fence the field .

______________________________________________

★ Formula Used :-

\begin{gathered}\begin{gathered}\\\;\boxed{\sf{\red{perimeter\;of\; triangle\;=\;\bf{sum \: of \: all \: sides}}}}\end{gathered} \end{gathered}

____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Solution}}}

Given,

» side of triangular field

• 35 m

• 50 m

• 110 m

To find ,

» length of the wire required to fence the field

~ Let's solve it ,

_____________________________________________

we know that ,

\begin{gathered}\begin{gathered}\\\;{\sf{{perimeter\;of\; triangle\;=\;\bf{sum \: of \: all \: sides}}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf perimeter \: of \: triangle = 35 + 50 + 110}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf perimeter \: of \: triangle = 195m}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}\end{gathered}

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: hence , length \:  of \:  wire  \: required  \: for \:  fencing = \underline{195 \: m}}}}

____________________________________________

★ More to know :-

\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; perimeter\;of\;rectangle\;=\;2(length\;\times\;breadth)}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; perimeter\;of\;square\;=\;4a}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; perimeter\;of\;parallelogram\;=\;2(sum \: of \: two \: adjacent \: sides)}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; perimeter\;of\;circle\;=\;2\pi r}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; perimeter\;of\;triangle\;=\;sum \: of \: three \: sides}}\end{gathered} \end{gathered}

Similar questions