Math, asked by aarushig125, 1 month ago

The sides of a triangular field are 51 m , 37 m and 20 m . find the number of flower beds that can be prepared if each bed is to contain 2×3 sq m space.​

Answers

Answered by llJesusll
8

\large\boxed{\textsf{\textbf{\blue{S0LUTI0N\::-}}}}

\underline{\bf{\dag} \:\mathfrak{step\;by\;step\; explanation\: :}}\\\\

s = a+b+c/2

51 +37+20/2

\mapsto54

area = √s(s-a)(s-b)(s-c)

= √54 (54-51)(54-37)(54-20)

=√54(3)(17)(34)      {simplest form}

= √(3*2*3*3)*(3)*(17)*(17*2)

= 3*2*3*17

= 306m²

area needed for flower beds

\mapsto 306/9

\mapsto 34

{\underline{\textsf{ \textbf{∴34 flower beds are required to occupy the space}}}}

Answered by Anonymous
10

{\large{\bf{\red{\clubs{\underline{Given :}}}}}}

The sides of a triangular field are 51 m , 37 m and 20 m .

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\large{\bf{\blue{\clubs{\underline{To Find :}}}}}}

find the number of flower beds that can be prepared if each bed is to contain 2×3 sq m space.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\large{\bf{\orange{\clubs{\underline{Solution :}}}}}}

{\blue{\bigstar{\mathfrak{\pink{\boxed{S = \frac{a + b + c}{2} }}}}}}

{\sf{\green{=  \frac{51 + 37 + 20}{2} }}}

{\sf{\green{=  {\cancel\frac{108}{2} }}}}

{\sf{\red{s=  54}}}

Than,

{\blue{\bigstar{\pink{\boxed{area=√s(s−a)(s−b)(s−c)}}}}}

{\sf{\green{=  \sqrt{54 (54-51)(54-37)(54-20} )}}}

{\sf{\green{=  \sqrt{54  \times (3) \times (17) \times (34} )}}}</u></p><p><u>[tex]{\sf{\green{=  \sqrt{54  \times (3) \times (17) \times (34} )}}}

{\sf{\green{=   \sqrt{93636} }}}

{\sf{\red{=   306 {m}^{2}  }}}

Square beds can be contained :

{\sf{\green{Area  \: of \:  1  \: bed = 2  \times  3 = 6 {m}^{2} }}}

{\sf{\green{Area  \: of  \: triangular \:  field = 306 {m}^{2} }}}

{\sf{\green{Beds  \: can \:  be  \: contained = {\cancel \frac{306}{6} }}}}

{\underbrace{\bf{\red{51  }}}}

So,

51 beds could be contained inside this triangular field.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\bf{\underline{\fcolorbox{green}{red}{\blue{XitzNobitaxX}}}}}

Similar questions