Math, asked by strangekalakar, 7 months ago


The sides of a triangular field are 55 m, 300 m and 300 m. Its area is equal to

O 476.6
0 471.4
O 478.2
0 459.8

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
6

Answer:

  • Sides of a triangle are 50 m, 300 m & 300 m
  • Area = ?

\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines \qbezier(1,1)(1,1)(4,1)\qbezier(1,1)(2.4,5)(2.4,5)\qbezier(4,1)(4,1)(2.4,5)\put(0.6,2.9){\sf 300 m}}\put(3.4,2.9){\sf 300 m}}\put(2.1,0.5){\sf 50 m}\end{picture}

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • We shall use the Heron's Formula for the area but before that we have to find the semi perimeter

\displaystyle\sf :\implies Perimeter = Sum \ of \ all \ sides\\\\

\displaystyle\sf :\implies Perimeter = 50+300+300\\\\

\displaystyle\sf :\implies\underline{\boxed{\sf Perimeter = 650 \ m}}

  • Now we shall find the area of the triangle using the Heron's Formula which is, Area = √{s(s-a)(s-b)(s-c)}

\displaystyle\sf \dashrightarrow Area_{\triangle} = \sqrt{s(s-a)(s-b)(s-c)}\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\texttt{ s = 325}}\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\texttt{ a = 50 }}\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\texttt{ b = 300 }}\\

\displaystyle{\scriptsize\qquad\bf{\because}\:\:\texttt{ c = 300 }}\\

\displaystyle\sf \dashrightarrow Area_{\triangle} = \sqrt{325(325-55)(325-300)(325-300)}\\\\

\displaystyle\sf \dashrightarrow Area_{\triangle} = \sqrt{325\times 275 \times 25\times 25}\\\\

\displaystyle\sf \dashrightarrow Area_{\triangle} = \sqrt{35546875}\\\\

\displaystyle\sf \dashrightarrow \pink{Area_{\triangle} = 5962.1 \ m}

\displaystyle\therefore\:\underline{\textsf{ The area of the triangle is \textbf{ 5962.1 m }}}

Answered by ItzDinu
3

\huge{ \pmb{ \frak{ \underline{ \color{blue}{❥Answer}}}}}

GIVEN:-

The sides of a triangular field are 55 m, 300 m and 300 m.

TO FIND:-

Area of Triangle.

SOLUTION:-

\impliesAs, the base BASE<<SIDE of a triangle we can assume the height to be approx the side

Therefore,

Height = 300

Area of A = 300*55/2 = 8250

Area of A=(7/15)*(Area of Circle)

8250 (7/15)* π * R*R

R = 75

Perimeter of a Circle = 2*π * R

Therefore,

Ans is 471.4

  • I Hope it's Helpful My Friend.
Similar questions