Math, asked by prakashtete383, 6 months ago

The sides of a triangular park are in the ratio of 2: 6: 7 and its perimeter is

300 m. Then its area is:

(A) 154 √57 cm^2

(B) 215 √45 cm^2

(C)
340 √56 cm^2

(D) 300√55cm^2​

Answers

Answered by Uriyella
15
  • The area of a triangular park = 300√55 m².

Given :

  • The ratio of the sides of a triangular park = 2 : 6 : 7.
  • The perimeter of a triangular park = 300 m.

To Find :

  • The area of a triangular park.

Solution :

First, we need to find the sides of a triangular park.

Let,

The first side be 2x.

The second side be 6x.

The third side be 7x.

Given,

Perimeter of the park = 300 m

→ a + b + c = 300 m

Where, a, b and c are the sides of a triangular park.

So,

→ 2x + 6x + 7x = 300 m

→ 8x + 7x = 300 m

→ 15x = 300 m

→ x =  \sf \cancel\dfrac{300}{15} \: m

→ x = 20 m

So, the sides of a triangular park :

The first side = 2x = 2 × 20 m = 40 m.

The second side = 6x = 6 × 20 m = 120 m.

The third side = 7x = 7 × 20 m = 140 m.

Now, we have to find the area of a triangular park.

By heron's formula,

 \sqrt{s(s - a)(s - b)(s - c)}

Where,

s =  \dfrac{a + b + c}{2}

We have,

  • a = 40 m.
  • b = 120 m.
  • c = 140 m.

 \dfrac{40 + 120 + 140}{2}  \: m

 \dfrac{160 + 140}{2}  \: m

  \cancel\dfrac{300}{2}  \: m

150 \: m

Now we have,

  • a = 40 m.
  • b = 120 m.
  • c = 140 m.
  • s = 150 m.

Now, substitute all the values in the heron's formula.

 \sqrt{150 \: m(150 \: m - 40 \: m)(150 \: m - 120 \: m)(150 \: m - 140 \: m)}

 \sqrt{150(110)(30)(10) \:  {m}^{4} }

 \sqrt{(2 \times 3 \times 5 \times 5)(2 \times 5 \times 11)(2 \times 3 \times 5)(2 \times 5)}  \:  {m}^{2}

 \sqrt{2 \times 3 \times 5 \times 5 \times 2 \times 5 \times 11 \times 2 \times 3 \times 5 \times 2 \times 5}  \:  {m}^{2}

 \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 5 \times 5 \times 5 \times 11}  \:  {m}^{2}

2 \times 2 \times 3 \times 5 \times 5 \sqrt{5 \times 11}  \:  {m}^{2}

4 \times 15 \times 5 \sqrt{55}  \:  {m}^{2}

60 \times 5 \sqrt{55}  \:  {m}^{2}

300 \sqrt{55}  \:  {m}^{2}

Hence,

The area of a triangular park is 300√55 m².

So, the option (D) 300√55 m² is correct.

Similar questions