Math, asked by abrahamtjose3107, 9 months ago

The sides of a triangular plot are in the ratio 2:3:4 and its perimeter is 900m. Its area is *

Answers

Answered by prince5132
17

GIVEN :-

  • Ratio of sides of ∆ are 2:3:4.
  • Perimeter of ∆ = 900 m.

TO FIND :-

  • Area of ∆.

SOLUTION :-

Let the ratio constant be "x".

.°. a = 2x , b = 3x , c = 4x.

  • a , b and c are sides of ∆.

Now,

 \\  :  \implies \displaystyle \sf \: Perimeter  \: of \:   \triangle = a + b + c \\  \\  \\

 :  \implies \displaystyle \sf \:900 = 2x + 3x + 4x \\  \\  \\

 :  \implies \displaystyle \sf \:900 = 9x \\  \\  \\

 :  \implies \displaystyle \sf \:x =  \frac{900}{9}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \:x = 100}} \\  \\

Therefore sides of triangle becomes ,

  • a = 2x = 200.
  • b = 3x = 300.
  • c = 4x = 400.

Now,

 \\  :  \implies \displaystyle \sf \:semi \: perimeter \: of \:  \triangle \: (s) =  \dfrac{a + b + c}{2}  \\  \\  \\

 :  \implies \displaystyle \sf semi \: perimeter \: of \:  \triangle \: (s) =\frac{900}{2}  \\  \\  \\

:  \implies \underline{ \boxed{ \displaystyle \sf semi \: perimeter \: of \:  \triangle \: (s) = 450 \: m.}} \\  \\

____________________

 \\

Now,

 \\ \dashrightarrow \displaystyle \sf \: Area \:  of  \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

\dashrightarrow \displaystyle \sf \:Area \:  of  \:  \triangle  =  \sqrt{450(450 -200)(450 -  300)(450 - 400)}  \\  \\  \\

\dashrightarrow \displaystyle \sf \:Area \:  of  \:  \triangle  = \sqrt{450 \times 250 \times 150  \times 50}  \\  \\  \\

\dashrightarrow \displaystyle \sf \:Area \:  of  \:  \triangle  = \sqrt{843750000}  \\  \\  \\

\dashrightarrow \underline{ \boxed{ \displaystyle \sf \:Area \:  of  \:  \triangle  = 29047.37 \: m ^{2} }} \\ \\

 \therefore \underline{\displaystyle \sf Area \ of \ triangle \ is \ 29047.37 \ m^{2}}

Similar questions