Math, asked by virendersaini78, 10 months ago

The sides of a triangular plot are in the ratio of 3 : 5 : 7 and its perimeter is 300 m. Find

its area

Answers

Answered by stylishtamilachee
56

Answer:

Let the sides be 3a, 5a and 7a.

Perimeter = sum of all sides

= > 3a + 5a + 7a = 300

= > 15a = 300

= > a = 300/15

= > a = 20 m

Sides are -

3a = 3(20m) = 60m

5a = 5(20m) = 100m

7a = 7(20m) = 140m

Semi - perimeter = 300/2 = 150

Using heron's formula-

= > \sqrt{150*(150-60)(150-100)(150-140)}

= > \sqrt{150*90*50*10}

= > \sqrt{15*9*5*10^4}

= > \sqrt{3*5*9*5*10^4}

= > 5*3*10^2 \sqrt3

= > 1500\sqrt3

Area is 1500 \sqrt3 m^2


RvChaudharY50: Perfect. ❤️
stylishtamilachee: Tysm bro ❤
BrainIyMSDhoni: Great :)
stylishtamilachee: Tysm :)
Answered by Anonymous
44

Given :

  • Sides of a triangular plot are in the ratio 3:5:7.

Perimeter of the plot is 300m.

To Find :

  • Area of the triangular plot.

Solution :

  • Firstly we will find the sides of triangular plot :

\longmapsto\tt\bold{Let\:sides\:be=3x,5x\:and\:7x}

\longmapsto\tt{3x+5x+7x=300}

\longmapsto\tt{15x=300}

\longmapsto\tt{x=\cancel\dfrac{300}{15}}

\longmapsto\tt\bold{x=20}

So , The sides of Triangular plot are 60m , 100m and 140m.

Now ,

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{\dfrac{60+100+140}{2}}

\longmapsto\tt{\cancel\dfrac{300}{2}}

\longmapsto\tt\bold{150m.}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{150(150-60)(150-100)(150-140)}}

\longmapsto\tt{\sqrt{150\times{(90)}\times{(50)}\times{(10)}}}

\longmapsto\tt{\sqrt{3\times{5}\times{5}\times{2}\times{3}\times{3}\times{5}\times{2}\times{5}\times{2}\times{5}\times{5}\times{2}}}

\longmapsto\tt{3\times{5}\times{5}\times{5}\times{2}\times{2}\sqrt{3}}

\longmapsto\tt\bold{1500\sqrt{3}{m}^{2}}

Therefore , The Area of the Triangular Plot is 1500√3m²...

Similar questions