Math, asked by Golgappi10, 10 months ago

The sides of a triangular plot are in the ratio of 3:5:7 and it's perimeter is 300m. Find its area.​

Answers

Answered by Uriyella
85

Given :–

  • Sides of a triangular plot are in the ratio of 3:5:7
  • It's perimeter = 300m

To Find :–

  • Area of a triangular plot.

Solution :–

Let the sides of a triangular plot are 3x, 5x and 7x.

Perimeter = 300m

⟹ a + b + c = 300m

⟹ 3x + 5x + 7x = 300m

⟹ 8x + 7x = 300m

⟹ 15x = 300m

⟹ x =  \dfrac{300}{15}

Cut the denominator (5) and the numerator (300) by 5, we obtain

⟹ x =  \dfrac{60}{3}

Now, cut the denominator (3) and the numerator (60) by 3, we obtain

⟹ x = 20

So, the sides are :–

  • 3x = 3 × 20 = 60m
  • 5x = 5 × 20 = 110m
  • 7x = 7 × 20 = 140m

Area of triangle =  \sqrt{s(s - a)(s-b)(s-c)}

  • a = 60
  • b = 110
  • c = 140

where, s =  \dfrac{a+b+c}{2}

 \dfrac{60 + 100 + 140}{2}

 \dfrac{300}{2}

Cut the denominator (2) and the numerator (300) by 2, we obtain

⟹ 150

  • s = 150

Now,

 \sqrt{150(150 - 60)(150 - 110)(150 - 140)}

 \sqrt{150(90)(50)(10)}

 \sqrt{(3 \times 5 \times 10)(3 \times 3 \times 10)(5 \times 10) \times 10}

⟹ 3 × 5 × 10 × 10√3

⟹ 15 × 100√3

⟹ 1500√3m²

Hence,

The area of a triangular plot is 1500√3m².


Vamprixussa: Keep up the good work !
Answered by Anonymous
136

\large{\red{\underline{\tt{Digram\::-}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}(6,8)\linethickness{0.5mm}\qbezier(1,.5)(2,1)(4,2)\qbezier(4,2)(2,3)(2,3)\qbezier(2,3)(2,3)(1,0.5)\put(.7, .3){$C$}\put(4.05, 1.9){$B$}\put(1.7, 2.95){$A$}\put(3.2, 2.5){\sf{60 m}}\put(0.7,1.7){\sf{100 m}}\put(2.7, 1.05){\sf{140 m}}\end{picture}

\large{\red{\underline{\tt{Solution\::-}}}}

Let the required ratio number be 3x, 5x and 7x

\: :\implies\sf \:3x + 5x + 7x = Perimeter\\\\\\\::\implies\sf \:3x + 5x + 7x = 300\\\\\\:\implies\sf 15x = 300\\\\\\:\implies\sf x = \dfrac{300}{15}\\\\\\:\implies\sf x = 20\:m

So,

  • The first side, a = 3 × 20 = 60 m

  • The second side, b = 5 × 20 = 100 m

  • The third side, c = 7 × 20 = 140 m

\underline{\textsf{Semi - Perimeter of the Triangle :}}

:\implies\sf Semi \:Perimeter=\dfrac{Sum\:of\:Sides}{2}\\\\\\:\implies\sf s = \dfrac{a + b + c}{2}\\\\\\:\implies\sf s = \dfrac{60 + 100 + 140}{2}\\\\\\:\implies\sf s = \dfrac{300}{2}\\\\\\:\implies\sf s = 150\:m

\rule{120}{0.8}

\underline{\textsf{Area of a triangle :}}

\dashrightarrow\sf\:\:Area=\sqrt{s(s-a)(s-b)(s-c)}\\\\\\\dashrightarrow\sf\:\:Area=\sqrt{150(150-60)(150-100)(150-140)}\\\\\\\dashrightarrow\sf\:\:Area = \sqrt{150 \times 90 \times  50 \times 10}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf{Area = 1500\sqrt {3}\:m^2}}}

\therefore\:\underline{\bf{Volume\: of\: cylinder\: is \:1500\sqrt 3\:m^2}}.


Vamprixussa: Keep up the good work !
Similar questions