Math, asked by itzdevilqueen, 7 months ago

The sides of a triangular plot are in the ratio of 3:5:7 and its perimeter
is 300 m. Find its area.​

Answers

Answered by Anonymous
442

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\text{\large\underline{\red{Given:-}}}

  • Sides of a triangular plot are in the ratio 3:5:7.
  • Perimeter of the plot is 300m.

\text{\large\underline{\purple{To find}}}

Area of the triangular plot.

\text{\large\underline{\pink{Solution:-}}}

Firstly we will find the sides of triangular plot :

\longmapsto\tt\bold{Let\:sides\:be=3x,5x\:and\:7x}

\longmapsto\tt{3x+5x+7x=300}

\longmapsto\tt{15x=300}

\longmapsto\tt{x=\cancel\dfrac{300}{15}}

\longmapsto\tt\bold{x=20}

So , The sides of Triangular plot are 60m , 100m and 140m.

Now ,

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{\dfrac{60+100+140}{2}}

\longmapsto\tt{\cancel\dfrac{300}{2}}

\longmapsto\tt\bold{150m.}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{150(150-60)(150-100)(150-140)}}

\longmapsto\tt{\sqrt{150\times{(90)}\times{(50)}\times{(10)}}}

\longmapsto\tt{\sqrt{3\times{5}\times{5}\times{2}\times{3}\times{3}\times{5}\times{2}\times{5}\times{2}\times{5}\times{5}\times{2}}}

\longmapsto\tt{3\times{5}\times{5}\times{5}\times{2}\times{2}\sqrt{3}}

\longmapsto\tt\bold{1500\sqrt{3}{m}^{2}}

Therefore , The Area of the Triangular Plot is 1500√3m²...

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by EnchantedBoy
2

\large\bf\underline{\underline{Given:-}}

\longmapsto The sides of a triangular plot are in the ratio of 3:5:7

\longmapsto Its perimeter  is 300 m

\large\bf\underline{\underline{To \ find:-}}

\longmapsto Its area

\large\bf\underline{\underline{Answer:-}}

The sides of a the triangular plot are in the ratio 3 : 5 : 7.

So, let the sides of the triangle be 3x, 5x and 7x.

Also it is given that the perimeter of the triangle is 300 m therefore,

\Longrightarrow 3x + 5x + 7x = 300

\Longrightarrow 15x = 300

\Longrightarrow\displaystyle{x = \frac{300}{15}}

\Longrightarrow\displaystyle\underline{x = 20}

Therefore, the sides of the triangle are 60,100 and 140.

Now using herons formula:

\displaystyle Area = \sqrt{s(s - a)(s - b)(s - c)}

\displaystyle S = \frac{60 + 100 + 140}{2} = \frac{300}{2} = 150m

Area of triangle:

\displaystyle Area = \sqrt{s(s - a)(s - b)(s - c)}

\displaystyle\Longrightarrow A = \sqrt{150(150 - 60)(150 - 100)(150 - 140)}

\displaystyle\Longrightarrow \sqrt{150\times 90\times 50\times 10}

\displaystyle\Longrightarrow \sqrt{6750000}

\displaystyle\Longrightarrow 1500 \sqrt{3}m^2

Therefore, \displaystyle \ area \ of \ triangle \ plot \ is \ 1500 \sqrt{3}m^2

_____________________

Similar questions