Math, asked by vibhasmondal9, 2 days ago

The sides of a triangular plot are in the ratio of
3:5:7 and its perimeter is 300m. Find its area.​

Answers

Answered by jasleena3330
5

Answer:

X = 20

Step-by-step explanation:

3x +5x + 7x = 300

15x = 300

X= 20

3 * 20 = 60

5 * 20= 100

7* 20 = 140

Answered by jungkookIsspecial
117

\large\underline{\underline \red{\bigstar{\textbf{\textsf{\: question\::-}}}}}

the sides of a triangular plot are in the ratio of 3:5:7 and it's perimeter is 300m find its area

\large\underline{\underline \red{\bigstar{\textbf{\textsf{\: given\::-}}}}}

the sides of a triangular plot are in ratio 3:5:7 and it's perimeter is 300m

\large\underline{\underline \red{\bigstar{\textbf{\textsf{\: to \: find\::-}}}}}

its area

\large\underline{\underline \red{\bigstar{\textbf{\textsf{\: solution\::-}}}}}

let the side be 3x,5x,7x

now given perimeter = 300m

  \sf⇝ semi  - perimeter =  \frac{perimeter}{2}  \\  \\

\sf⇝ semi \: perimeter =  \frac{300}{2}  \\  \\

\sf⇝ semi \: perimeter = 150m \\  \\

now by taking the sides perimeter = 300m

\sf⇝ a + b + c = 300 \\  \\

\sf⇝ 3x + 15x + 7x = 300 \\  \\

\sf⇝ 15x = 300 \\  \\

\sf⇝ x =  \frac{300}{15}  \\  \\

\sf⇝ x = 20 \\  \\

now,

a = 3x = 3 × 20 = 60m

b = 5x = 5 × 20 = 100m

c = 7x = 7 × 20 = 140m

now, by using area of triangle

\sf⇝  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\

\sf⇝  \sqrt{150(150 - 60)(150 - 100)(150 - 140}  \\  \\

\sf⇝  \sqrt{15 \times (3 \times 5) \times 5 \times (10)^{4} }  \\  \\

\sf⇝  \sqrt{15 \times (3 \times 5) \times 3 \times (10) ^{4} }  \\  \\

\sf⇝  \sqrt{(15)^{2} } \times 3  \times (10)^{4}  \\  \\

\sf⇝  \sqrt{15^{2} }  \times  \sqrt{3} \times (10) ^{4}   \\  \\

\sf⇝ (15) \times  \sqrt{3}  \times (10)^{2}  \\  \\

\sf⇝ (15) \times 3 \times (100) \\  \\

\sf⇝ 1500 \sqrt{3}  \\  \\

so therefore the area is 1500√3

Similar questions