Math, asked by bshabna578, 6 months ago

The sides of a triangular plot are in the ratio of 6 : 7: 8 and its
perimeter is 420 m. Find its area.

Answers

Answered by HA7SH
50

Step-by-step explanation:

 \huge\mathrm\star\fbox{Answer:-}\star

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 \huge\mathrm\star\fbox{Solution:-}\star

\Rightarrow  \mathrm{\boxed{The\ area\ of\ the\ triangular\ field\ is\ 2100\ \sqrt{15}m²}}

 \huge\mathrm\star\fbox{Explanation:-}\star

:\Longrightarrow  \mathrm{Given,\ perimeter\  of\ a\ triangular\ field\ is\ 420m\ and\ its\ sides\ are\ in\ the\ ratio\ 6\ :\ 7\ :\ 8.}

:\Longrightarrow  \mathrm{Let\ sides\ of\ a\  triangular\ field\ be\ a\ =\ 6x,\ b\ =\ 7x\ and\ c\ =\ 8x.}

:\Longrightarrow  \mathrm{Perimeter\ of\ a\  triangular\ field,\ 2s\ =\ a\ +\ b\ +\ c}

:\Longrightarrow  \mathrm{420\ =\ 6x\ +\ 7x\ +\ 8x\ =\ 420\ =\ 21x}

:\Longrightarrow  \mathrm{x\ =\ \dfrac{420}{21}\ =\ 20m}

:\Longrightarrow \therefore  \mathrm{Area\ of\ a\ triangular\ field\ are}

:\Longrightarrow  \mathrm{a\ =\ 6\ ×\ 20\ =\ 120m}

:\Longrightarrow  \mathrm{b\ =\ 7\ ×\ 20\ =\ 140m}

:\Longrightarrow  \mathrm{c\ =\ 8\ ×\ 20\ =\ 160m}

:\Longrightarrow  \mathrm{\dfrac{420}{2}\ =\ 210m}

:\Longrightarrow  \mathrm{Area\ of\ triangular\ field}

:\Longrightarrow  \mathrm{\sqrt{s(s-a)(s-b)(s-c)}}  \mathrm{by,\ herons\ formula}

:\Longrightarrow  \mathrm{\sqrt{210(210-120)(210-140)(210-160)}}

:\Longrightarrow  \mathrm{100\ \sqrt{21×9×7×5}}

:\Longrightarrow  \mathrm{100\ \sqrt{7×3×3²×7×5}}

:\Longrightarrow  \mathrm{100\ ×\ 7\ ×\ 3\ ×\ \sqrt{15}\ =\ 2100\ \sqrt{15m²}}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 \Large\mathrm\star\fbox{Hence,\ solved}\star

Answered by Híɾo
367

 \huge {\bf {\underbrace {Question}}}

The sides of a triangular plot are in the ratio of 6 : 7: 8 and its

perimeter is 420 m. Find its area.

 \huge {\bf {\underbrace {Answer}}}

Given:-

  • Sides of a triangular plot are in the ratio of 6:7:8

  • Perimeter is 420 m.

To Find:-

  • Area of a triangular plot.

Solution:-

Let, sides in the ratio 6:7:8 be a, b and c

Let,

a = 6x

b = 7x

c = 8x

Now,

 {\sf {Perimeter\: of\: triangle = 420 m.}}

 {\sf {⟹}}  {\sf {a + b + c = 420}}

 {\sf {⟹}}  {\sf {6x + 7x + 8x = 420}}

 {\sf {⟹}}  {\sf {21x = 420}}

 \large {\sf {⟹}}  {\sf {x = \frac{420}{21}}}

 {\sf {⟹}}  {\sf {\boxed {\green {x = 20m.}}}}

So, the lines will be

a = 6x = 6 × 20 = 120 m.

b = 7x = 7 × 20 = 140 m.

c = 8x = 8 × 20 = 160 m.

Then,

 {\sf {⟹}}  {\large {\sf {s = \frac{a + b + c}{2}}}}

 {\sf {⟹}}  {\large {\sf {s = \frac {120 + 140 + 160}{2}}}}

 {\sf {⟹}}  {\large {\sf {s = \frac {420}{2}}}}

 {\sf {⟹}}  {\sf {\boxed {\green {s = 210}}}}

Area of triangle by Heron's formula

 {\sf {\boxed {\green {Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}

 {\sf {⟹}}  {\sf {\sqrt{210(210 - 120)(210 - 140)(210 - 160)}}}

 {\sf {⟹}}  {\sf {\sqrt{210(90)(70)(50}}}

 {\sf {⟹}}  {\sf {\sqrt{66150000}}}

 {\sf {⟹}}  {\sf {\boxed {\green {{8133.27m}^{2}}}}}

 {\sf {\boxed {\pink {Hence,\: the\: area\: of\: triangle\: is\: {8133.27m}^{2}}}}}


Anonymous: Great!
QueenOfStars: Astounding! :D
Híɾo: Thanks! :)
Similar questions