Math, asked by rytolia, 9 months ago

The sides of an equilateral triangle are x+y-1 , 2x-3y+1 and 3x-y-9 then the values of x and y are

Answers

Answered by Anonymous
6

Answer:

\sf{The \ value \ of \ x \ is \ 6 \ and \ the \ value \ of}

\sf{y \ is \ 2.}

Given:

  • Sides of equilateral triangle are:

  • x+y-1

  • 2x-3y+1

  • 3x-y-9

To find:

  • The values of x and y.

Solution:

\sf{Sides \ of \ equilateral \ triangle \ are \ congruent}

\sf{\therefore{x+y-1=2x-3y+1}}

\sf{\therefore{2x-x-3y-y=-2}}

\sf{\therefore{x-4y=-2...(1)}}

\sf{Also,}

\sf{x+y-1=3x-y-9}

\sf{\therefore{3x-x-y-y=8}}

\sf{\therefore{2x-2y=8}}

\sf{\therefore{2(x-y)=8}}

\sf{\therefore{x-y=\dfrac{8}{2}}}

\sf{\therefore{x-y=4...(2)}}

\sf{Subtract \ equation(1) \ from \ equation(2), \ we \ get}

\sf{x-y=4}

\sf{-}

\sf{x-4y=-2}

__________________

\sf{3y=6}

\sf{\therefore{y=\dfrac{6}{3}}}

\boxed{\sf{\therefore{y=2}}}

\sf{Substitute \ y=2 \ in \ equation(2), \ we \ get}

\sf{x-2=4}

\sf{\therefore{x=4+2}}

\boxed{\sf{\therefore{x=6}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ 6 \ and \ the \ value \ of}}}

\sf\purple{\tt{y \ is \ 2.}}

Similar questions