The sides of the triangle are 122 m, 22 m, 120 m. Find out the area of the triangle?
Answers
⚝ Given:-
- Side a = 122 m
- Side b = 22 m
- Side c = 120 m
⚝ To find:-
- The area of the triangle.
⚝ Formula Used:-
~Semi-Perimeter
Where,
- a = length of side a
- b = Length of side b
- c = length of side c
~Area of the triangle
Where,
- s = semi - perimeter
- a = length of side a
- b = Length of side b
- c = length of side c
_________________
⚝ Solution:-
Here we have sides of the triangle,
To find out the area of the triangle we need semi - perimeter of the triangle. So firstly we will find out the semi - perimeter of the triangle.
~Semi-Perimeter
On applying the formula we get,
. ° .Thus, The semi - perimeter is 132 m.
___________________
~Area of the triangle
Now we will find out the area of the triangle by applying the formula,
. ° . Thus the area of the triangle is 1320 m².
_______________
⚝ Given:-
Side a = 122 m
Side b = 22 m
Side c = 120 m
⚝ To find:-
The area of the triangle.
⚝ Formula Used:-
~Semi-Perimeter
\Large\boxed{\underline{\tt{Semi\:-\:Perimeter\:=\:\dfrac{a\:+\:b\:+\:c}{2}}}}
Semi−Perimeter=
2
a+b+c
Where,
a = length of side a
b = Length of side b
c = length of side c
~Area of the triangle
\Large\boxed{\underline{\tt{Area\:_{(\:TRIANGLE\:)}\:=\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)} }}}
Area
(TRIANGLE)
=
s(s−a)(s−b)(s−c)
Where,
s = semi - perimeter
a = length of side a
b = Length of side b
c = length of side c
_________________
⚝ Solution:-
Here we have sides of the triangle,
To find out the area of the triangle we need semi - perimeter of the triangle. So firstly we will find out the semi - perimeter of the triangle.
~Semi-Perimeter
On applying the formula we get,
\qquad\tt{:\implies\:Semi\:-\:Perimeter\:=\:\dfrac{a\:+\:b\:+\:c}{2}}:⟹Semi−Perimeter=
2
a+b+c
\qquad\tt{:\implies\:Semi\:-\:Perimeter\:=\:\dfrac{122\:+\:22\:+\:120}{2}}:⟹Semi−Perimeter=
2
122+22+120
\qquad\tt{:\implies\:Semi\:-\:Perimeter\:=\:\dfrac{264}{2}}:⟹Semi−Perimeter=
2
264
\qquad\tt{:\implies\:Semi\:-\:Perimeter\:=\:132\:m}:⟹Semi−Perimeter=132m
. ° .Thus, The semi - perimeter is 132 m.
___________________
~Area of the triangle
Now we will find out the area of the triangle by applying the formula,
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)} }:⟹Area
(TRIANGLE)
=
s(s−a)(s−b)(s−c)
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{132\:(\:132\:-\:122\:)\:(\:132\:-\:22\:)\:(\:132\:-\:120\:)} }:⟹Area
(TRIANGLE)
=
132(132−122)(132−22)(132−120)
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{132\:(\:10\:)\:(\:110\:)\:(\:12\:)} }:⟹Area
(TRIANGLE)
=
132(10)(110)(12)
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{132\:\times\:10\:\times\:110\:\times\:12\:} }:⟹Area
(TRIANGLE)
=
132×10×110×12
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{132\:\times\:1100\:\times\:12\:} }:⟹Area
(TRIANGLE)
=
132×1100×12
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\sqrt{\:1742400\:} }:⟹Area
(TRIANGLE)
=
1742400
\qquad\tt{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:1320\:m^{2}}:⟹Area
(TRIANGLE)
=1320m
2
. ° . Thus the area of the triangle is 1320 m².
_______________