The sides of triangle are 8cm, 15cm and 17cm. What is the length of its largest altitude?
Answers
Step-by-step explanation:
17cm .................
Perimeter of triangle is 40 (cm). Area of triangle is 60(cm^{2})(cm
2
) . Altitude on side 17 cm is 7.059 (cm).
Step-by-step explanation:
1. Side of triangle is 8 cm, 15 cm and 17 cm.
So
Perimeter of triangle = Sum of side of triangle
Perimeter of triangle= 8+15+ 17=40 (cm)
2. If we see side of triangle
8^{2}+15^{2}=17^{2}8
2
+15
2
=17
2
64+225=17^{2}64+225=17
2
289=17^{2}289=17
2
17^{2}=17^{2}17
2
=17
2
Means it satisfied Pythagoras rule
It must be a right angle triangle, and right angle opposite to side longest side 17 (cm).
3. Base =15 cm
Perpendicular= 8 cm
Hypotenuse =17 cm
4. So area of triangle =\frac{1}{2}\times base\times perpendicular=\frac{1}{2}\times 15\times 8=60(cm^{2})=
2
1
×base×perpendicular=
2
1
×15×8=60(cm
2
)
5.
Area of triangle=\frac{1}{2}\times base\times Perpendicular=\frac{1}{2}\times Hypotenuse\times altitude=
2
1
×base×Perpendicular=
2
1
×Hypotenuse×altitude
We can also write
\frac{1}{2}\times Hypotenuse\times altitude=
2
1
×Hypotenuse×altitude= Area of triangle
\frac{1}{2}\times 17\times altitude= 60
2
1
×17×altitude=60
On solving
Altitude =7.059 (cm)