Math, asked by jhariyaa, 3 months ago

The sides of triangle are in the ratio 13 : 14 : 15 and its perimeter is 84 cm. Find the area of the triangle.​

Answers

Answered by gitanjali4922
6

SolutioN :-

_______

Let the sides of triangle be 13x , 14x and 15x

Then , the perimeter of triangle = 13x + 14x + 15x

But , it is given that perimeter = 84

So , 13x + 14x + 15x = 84

 \small{ \sf \:  \implies \: 42x = 84}

\small{ \sf \:  \implies \:x =  \frac{84}{42}  }

\small{ \sf \:  \implies \:x = 2 }

 \boxed{ \mathrm{x = 2}}

Let the first side be a , second side b and third side be c of a triangle.

Then , by putting the value of x

  • a = 13x = 13 × 2 = 26
  • b = 14x = 14 × 2 = 28
  • c = 15x = 15 × 2 = 30

Now ,

By using Heron's formula , we have

 \boxed{\sf \small \: Area\:of\:\triangle =  \sqrt{s(s - a)(s - b)(s - c)} }

Where ,

  •  \sf {s\:=\:\frac{perimeter}{2} }
  • a, b, c denotes the three sides of triangle.

By putting their values ,

 \small\sf{Area \: of  \: \triangle =  \sqrt{ \frac{84}{2}( \frac{84}{2}  - 26)( \frac{84}{2}  - 28) ( \frac{84}{2} - 30 )} }

 \small \sf{ \implies \: Area \: of \:  \triangle =  \sqrt{42(42 - 26)(42 - 28)(42 - 30)} }

\small \sf{ \implies \: Area \:of  \:  \triangle =  \sqrt{42(16)(14)(12)} }

 \small \sf{ \implies \: Area \: of  \:  \triangle =  \sqrt{42 \times 16 \times 14 \times 12} }

 \small \sf{ \implies \: Area \: of  \:  \triangle =  \sqrt{112896}  }

 \small \sf{ \implies \: Area \: of  \:  \triangle =  {336 \: cm}^{2}   }

Therefore, area of triangle = 336m²

Answered by Anonymous
6

Correct Question-:

The sides of a triangle are in ratio 13:14:15 . If its perimeter is 84cm , Then Find the area of triangle .

AnswEr-:

\boxed{\sf { \:The\:Area\:\:of\:Triangle \:is\:336cm^{2}\:}}

EXPLANATION-:

  •  \frak{Given \: -:} \begin{cases} \sf{The\:\:sides\:of\:triangle\:are\:in\:ratio\:= \frak{ 13:14:15}} & \\\\ \sf{The\:Perimeter \:of\:triangle\:is\:= \frak{84\: cm}}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{The\:area\:of\:triangle \:.}\end{cases} \\\\

\sf{\dag{\underline {Solution\:of\:Question\: -:}}}

  •  \frak{Let's \:Assume \: -:} \begin{cases} \sf{The\:First\:side\:of\:triangle\:be\:= \frak{ 13x\: cm}} & \\\\ \sf{The\:Second \:side\:of\:triangle\:is\:= \frak{14x\: cm}}& \\\\ \sf{The\:Third \:side\:of\:triangle\:is\:= \frak{15x\: cm}}\end{cases} \\\\

  • \underline{\boxed{\star{\sf{\red{ Perimeter_{(Triangle)}  \: = \: Side _{1}+ Side _{2} + Side_{3}}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{Side_{1}\:or\:First\:Side\:= \frak{13x \: cm}} & \\\\ \sf{Side_{2}\:or\:Second\:Side\:= \frak{14x\: cm}}& \\\\ \sf{Side_{3}\:Third \:side\:= \frak{15x\: cm}}& \\\\ \sf{The\:Perimeter \:of\:triangle\:is\:= \frak{84\: cm}}\end{cases} \\\\

\sf{\underline {Now,}}

  • \longrightarrow{\sf { \:13x + 14x  + 15x = 84 \:}}

  • \longrightarrow{\sf { \:27x + 15x = 56 \:}}

  • \longrightarrow{\sf { \:42x = 84 \:}}

  • \longrightarrow{\sf { \:x = \dfrac{\cancel {84}}{\cancel {42}}\:}}

  • \longrightarrow{\sf { \:x = 2\:}}

Therefore,

  • \boxed{\sf { \:x = 2\:}}

Now ,

  •  \frak{Putting \:x =2\: -:} \begin{cases} \sf{Side_{1}\:or\:First\:Side\:= \frak{13x \:=\:13 \times 2=26 cm}} & \\\\ \sf{Side_{2}\:or\:Second\:Side\:= \frak{14x\:=14 \times 2\:=28 cm}}& \\\\ \sf{Side_{3}\:Third \:side\:= \frak{15x =15\times 2 = 30\: cm}}\end{cases} \\\\

Therefore ,

  • \boxed{\sf { \:The\:three\:sides\:of\:Triangle \:are\:26cm\:,28cm\;and\:30cm\:}}

Now ,

  • By using Heron's Formula

  • \boxed{\sf{\red{Area\:= \sqrt{ S(s-a)(s-b)(s-c)}}}}

  • Here -:

  • S = Semi Perimeter = \sf{\dfrac{Perimeter}{2}} = \sf{\dfrac{84}{2} = 42 cm}

  • A = First Side = 26 cm

  • B = Second Side = 28 cm

  • C = Third Side = 30 cm

Now , By Putting known Values in Formula of Area -:

  • \longrightarrow{\sf{ \sqrt{ 42(42-26)(42-28)(42-30)}}}

  • \longrightarrow{\sf{ \sqrt{ 42(16)(14)(12)}}}

  • \longrightarrow{\sf{ \sqrt{ 42\times 16 \times 14 \times 12 }}}

  • \longrightarrow{\sf{ \sqrt{ 112896}}}

  • \longrightarrow{\sf{ Area\: \triangle = 336cm^{2}}}

Hence -:

  • \boxed{\sf { \:The\:Area\:\:of\:Triangle \:is\:336cm^{2}\:}}

___________________________♡______________________________

Similar questions