Math, asked by jassmeet2760, 11 months ago

The sides of triangles are 50cm 60cm and 52 cm . Find the area of triangles by using herons formula

Answers

Answered by lalit99992
3

Step-by-step explanation:

Let a=50 cm

b=60 cm

c=52 cm are sides of triangle.

s=a+b+c/2

=50+60+62/2

=172/2

=86 cm

Area of triangle

=s under root(s-a)(s-b)(s-c)

=86 under root (86-50)(86-60)(86-52)

=86 under root (36)(26)(34)

=86 under root 31824

=86×150 under root 2

=1290 under root 2

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=1236.6\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle = 50 cm,60 cm,52 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{50+ 60+ 52}{2} \\ \\ : \implies s = \frac{162}{2} \\ \\ \green{ : \implies s = 81} \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{81(81- 50)(81-60)(81- 52)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{81\times 31\times 21\times 29} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1529199} \\ \\ : \implies \text{Area \: of \: triangle =}1236.6\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 1236.6\: {cm}}^{2} }

Similar questions