Math, asked by pooja3647, 1 year ago

the sides of triangles plot are in the ratio of 3:5:7 and its perimeter is 300m find the area​

Answers

Answered by princeramnath0001
4

here is ur answer...

hope this may help you

Attachments:
Answered by nain31
11
 \bold{GIVEN}

 \mathsf{The \: sides \: of \: an \: triangular \: plot \: is \:in \: ratio \: 3:5:7 \: and \: its \: perimeter \: is \: 300 m. }

 \mathsf{Let \: the \: common \: ratio \: be \: x }

 \mathsf{So, \: sides \: becomes, }

 \bold{3x }

 \bold{5 x }

 \bold{ 7x }

 \mathsf{Since, \: perimeter \:is \: the \: sum \: of \: all \: sides}

 \mathsf{So, }

 \mathsf{3x + 5x + 7x = 300}

 \mathsf{15x = 300}

 \mathsf{x = \dfrac{300}{15}}

 \huge \boxed{\mathsf{x = 20}}

 \mathsf{So, \: sides \: of \: triangle \: will \: be, }

 \bold{3 \times 20 = 60}

 \bold{5 \times 20 = 100}

 \bold{ 7 \times 20 = 140}

 \mathsf{Since , \: no \: side \: of \: triangle \: is \: equal \: therefore \: its \: a \: scalene \: triangle . }

 \boxed{AREA \: OF \: SCALENE \: TRIANGLE = \sqrt{s(s-a) (s-b) (s-c)}}

 \mathsf{Where \: s \: is \: semi \: perimeter }

 \boxed{ \mathsf{Semi \: perimeter = \dfrac{a + b + c}{2}}}

 \mathsf{Or \: half \: of \: perimeter \: of \: triangular \: plot}

 \mathsf{Semi \: perimeter = \dfrac{140+60+100}{2}}

 \mathsf{Semi \: perimeter = \dfrac{300}{2}}

 \mathsf{Semi \: perimeter = 150}

 \mathsf{Area \: will \: be}

 \mathsf{AREA \: OF \: SCALENE \: TRIANGLE = \sqrt{150 (150-60) (150-100) (150-140)}}

 \mathsf{AREA \: OF \: SCALENE \: TRIANGLE = \sqrt{150 (90) (50) (10)} }

 \mathsf{AREA \: OF \: SCALENE \: TRIANGLE = \sqrt{6750000}}

 \boxed{\mathsf{AREA \: OF \: SCALENE \: TRIANGLE = 2598 \: m^{2}}}
Similar questions