The sides of two squares are in the ratio 4:5 Find the ratio of their areas.
Answers
Answer:
for first square,
let side be 4x
area of square = (side × side)
so, area= (4x × 4x) =
for second square,
let side be 5x
area= (5x × 5x)
ratio of area of both square =
area of first / area of second= (4x × 4x )/(5x × 5x)
ratio = 16/25
ratio = 16:25
Step-by-step explanation:
i wish this helped
please make brainliest
From the given question the correct answer is:
the ratio of the areas 16:25
Given : the ratio of two squares are in 4:5
To find:
Find the ratio of their areas.
Solution:
Let, the side of first square be 4x
and the side of the second square be 5x
the sides of the square are equal.
now we will find the area of the first square.
area of a square =
area of a first square=
=16
The Area of a first square is 16
area of a second square=
=25
Area of a second square is 25
From the area of first and second square we get the ratio 16:25
hence , the ratio of the areas 16:25