Math, asked by jeanficra614, 1 year ago

The simple form of √5-√4/√5+√4

Answers

Answered by iHelper
0
Hello!

\dfrac{\sqrt{5} - \sqrt{4}}{\sqrt{5} + \sqrt{4}}

\dfrac{\sqrt{5} - 2}{\sqrt{5} + 2} \sf \:x\: \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2}

\dfrac{(\sqrt{5} - 2)^{2}}{(\sqrt{5})^{2} - (2)^{2}}

\dfrac{5 - 4\sqrt{5} + 4}{5 - 4}

\boxed{\sf 9 - 4\sqrt{5}}

Cheers!
Answered by laxman10201969
1
Hello ,

The answer is 9 - 4√5

Here is the explanation
MARK IT AS THE BRAINLIEST,if it helps

  \frac{ \sqrt{5} -  \sqrt{4}  }{ \sqrt{5}  +   \sqrt{4}  }   \times  \frac{1}{1}   \\  =  \frac{ \sqrt{5} -  \sqrt{4}  }{ \sqrt{5}  +  \sqrt{4} }  \times   \frac{ \sqrt{5}  -  \sqrt{4} }{ \sqrt{5}  -  \sqrt{4} }  \\ =  \frac{5 - 2 \sqrt{20}  + 4}{5 - 4}  \\  = 9 - 2 \sqrt{20}  \\  = 9 - 4 \sqrt{5}
First of all to simplify it we will rationalize it
To rationalize an irrational number multiply the same number by it with the opposite sign for the constant term in a polynomial

Similar questions