Math, asked by scorefootball90, 10 days ago

The simple interest and compound interest of a certain sum of money for 2 years are Rs 840 and Rs 869.40 respectively. Let us calculate that sum of money and the rate of interest.​

Answers

Answered by hrijvi0508vijayadas
0

Answer:

Given:

Simple interest (S.I) = Rs. 840

Compound Interest (C.I) = Rs. 869.40

Time = 2 years

To find:

The Rate of Interest (R) and the Principal (P)

The formula to find Simple Interest (S.I) is

\boxed{\bf {S.I=\frac{PRT}{100}}}

S.I=

100

PRT

By putting the value of Time = 2 years,

S.I=\frac{P\times R \times 2}{100}S.I=

100

P×R×2

\frac{PR}{50}= Rs\ 840

50

PR

=Rs 840 ___(i)

Now,

The formula to find the Compound Interest (C.I) is

\boxed{\bf C.I = P[(1+\frac{R}{100})^{n}-1]}

C.I=P[(1+

100

R

)

n

−1]

Putting the value of time = 2 years,

C.I = P[(1+\frac{R}{100})^{2}-1]C.I=P[(1+

100

R

)

2

−1]

\implies P[(1+\frac{R}{100})^{2}-1]= Rs\ 869.40⟹P[(1+

100

R

)

2

−1]=Rs 869.40

\implies P[\{(1)^{2}+(\frac{R}{100})^{2}+2(1)(\frac{R}{100}) \}-1]= Rs\ 869.40⟹P[{(1)

2

+(

100

R

)

2

+2(1)(

100

R

)}−1]=Rs 869.40

[ As (a+b)² = a² + b² + 2ab ]

\implies P[\red{1}+\frac{R^{2}}{10000}+\frac{R}{50}\red{-1}]= Rs\ 869.40⟹P[1+

10000

R

2

+

50

R

−1]=Rs 869.40

\implies P[\frac{R^{2}}{10000}+\frac{R}{50}]= Rs\ 869.40⟹P[

10000

R

2

+

50

R

]=Rs 869.40

Here (R) can be taken as common in LHS

\implies PR[\frac{R}{10000}+\frac{1}{50}]= Rs\ 869.40⟹PR[

10000

R

+

50

1

]=Rs 869.40

[Taking LCM]

\implies PR[\frac{R+200}{10000}]= Rs\ 869.40⟹PR[

10000

R+200

]=Rs 869.40 ___(ii)

Now,

Dividing equation (ii) by equation (i)

\boxed{\implies \dfrac{PR[\frac{R+200}{10000}]= Rs\ 869.40}{\frac{PR}{50}= Rs\ 840}}

50

PR

=Rs 840

PR[

10000

R+200

]=Rs 869.40

Here (PR) will be cancelled in both denominator and numerator.

\implies \dfrac{[\frac{R+200}{10000}]}{\frac{1}{50}} = \dfrac{ 869.40}{ 840}⟹

50

1

[

10000

R+200

]

=

840

869.40

\implies \dfrac{R+200}{10000}\times 50 = \dfrac{ 869.40}{ 840}⟹

10000

R+200

×50=

840

869.40

\implies \dfrac{R+200}{200} = \dfrac{ 869.40}{ 840}⟹

200

R+200

=

840

869.40

By doing cross multiplication.

⇒ 200(869.40) = 840(R+200)

⇒ 173880 = 840R + 168000

⇒ 173880 - 168000 = 840R

[By transporting 168000 to LHS]

⇒ 5880 = 840R

⇒ 5880 ÷ 840 = R

⇒ 7 = R

∴ R% = 7%

Now,

\implies \frac{PR}{50} = 840⟹

50

PR

=840

Putting the value of R,

\implies \frac{P\times 7}{50} = 840⟹

50

P×7

=840

⇒ 7P = 840 × 50

⇒ 7P = 42000

⇒ P = 42000 ÷ 7

∴ Principal (P) = Rs. 6000

Hence,

The principal (P) = Rs. 6000

Rate of Interest (R) = 7%

Similar questions