Math, asked by sachin6992, 10 months ago

The simple interest and the compound interest on a certain sum for 2 years is 1250 and 1475 respectively. Find the rate of interest. ​

Answers

Answered by Anonymous
203

Solution:

Let Principal amount be P.

Rate of interest be R%.

Given:

  • Simple Interest (SI) = Rs. 1250
  • Compound interest (CI) = Rs. 1475
  • Time = 2 years

To Find:

  • Rate of interest.

Formula used:

  • \tt{Simple\;Interest=\dfrac{PRT}{100}}
  • \tt{Compound\;Interest=Amount-Principal\;amount}
  • \tt{Amount=P\Bigg(1+\dfrac{R}{100}\Bigg)^{t}}

\rule{200}{2}

Now,

\tt{\implies Simple\;Interest=\dfrac{PRT}{100}}

\tt{\implies 1250=\dfrac{P\times R\times 2}{100}}

\tt{\implies 1250=\dfrac{PR}{50}}

\tt{\implies PR=1250\times 50}

\tt{\implies PR = 62500}

\tt{\implies R=\dfrac{62500}{P}\;\;\;\;\;.............(1)}

\rule{200}{2}

\tt{\implies Compound\;Interest=Amount-Principal\;amount}

\tt{\implies CI = P\Bigg(1+\dfrac{R}{100}\Bigg)^{t}-P}

Now, put the values in the formula,

\tt{\implies 1475=P\Bigg(1+\dfrac{62500}{100P}\Bigg)^{2}-P\;\;\;\;\;\Bigg[\therefore R=\dfrac{62500}{P}\Bigg]}

\tt{\implies 1475=P\Bigg(1+\dfrac{625}{P}\Bigg)^{2}-P}

Now, by using (a + b)² = a² + b² + 2ab

\tt{\implies 1475=P\Bigg(1+\dfrac{390625}{P^{2}}+\dfrac{1250}{P}\Bigg)-P}

\tt{\implies 1475=P+\dfrac{390625P}{P^{2}}+\dfrac{1250P}{P}-P}

\tt{\implies 1475=P+\dfrac{390625}{P}+1250-P}

\tt{\implies 1475=\dfrac{390625}{P}+1250}

\tt{\implies 1475=\dfrac{390625+1250P}{P}}

\tt{\implies 1475P=390625+1250P}

\tt{\implies 1475P-1250P=390625}

\tt{\implies 225P=390625}

\tt{\implies P=\dfrac{390625}{225}}

\tt{\implies P=Rs.\;1736.11}

Hence, Principal amount = Rs. 1736.11

\rule{200}{2}

Now, put the value of "P" in equation (1),

\tt{\implies R=\dfrac{62500}{P}\;\;\;\;\;.............(1)}

\tt{\implies R=\dfrac{62500}{1736.11}}

\tt{\implies R=36\%\;(Approx)}

Hence, Rate of interest is 36%.

Answered by Anonymous
39

Question : The simple interest and the compound interest on a certain sum for 2 years is 1250 and 1475 respectively. Find the rate of interest.

Solution :

Let Pricipal be x and rate of interest be y%.

Given :

  • Simple Interest (SI) = 1250
  • Compound Interest (CI) =1475
  • Time (T) = 2 years

To Find :

  • Rate of interest (R)

Formula used :

SI = \frac{P \times R \times T}{100}

CI = P( { 1 + \frac{R}{100}) }^{T}  - P

 =  > SI = \frac{P \times R \times T}{100} \\  =  > 1250 =  \frac{x \times y \times 2}{100}  \\  =  > 1250 = \frac{xy}{50}  \\  =  > 1250 \times 50 = xy \\  =  > 62500 = xy \\  =  >   \frac{62500}{x} = y   \\  =  > y =  \frac{62500}{x}  \:  \:  \:  \:  \:  \:  \:  \: ........(1)

Now put the value of y in this formula :

 =  >CI = P( { 1 + \frac{R}{100}) }^{T}   -P  \\  =  > 1475  = x( {1 +  \frac{62500}{100 x}) }^{2}  - x\\  =  > 1475 = x( { 1 + \frac{625}{x}) }^{2}  - x \\  =  >1475 = x( { 1 + \frac{390625}{ x^2 } +  \frac{1250}{x} ) }   - x \\  =  > 1475 = x +  \frac{390625}{x}  + 1250 - x \\=>1475=\frac{390625}{x}  + 1250\\=>1475=\frac{390625+1250x}{x}\\=>1475x=390625+1250x\\=>1475x-1250x=390625\\=>225x=390625\\=>x=\frac{390625}{225}\\=>x=1736.1

Now we put the value of x in equation (1).

=>y=\frac{62500}{x}\\=>y=\frac{62500}{1736.1}\\=>36\% (approx)

Hence, Rate of interest = 36% (approx)

Note : We can also take value of x in approx.

Similar questions