Math, asked by beherapc2017, 11 months ago

the simple interest on a certain sum at 10% for 6 year and 7 years differ by rupees 688 find the sum​

Answers

Answered by warylucknow
1

Answer:

The principal value is Rs.6,880.

Step-by-step explanation:

Thew formula to compute the simple interest is

SI=\frac{P\times r\times t}{100}

Given:

SI₂ - SI₁ = 688

t₁ = 6 years

t₂ = 7 years

r = 10%

Compute the principal value as follows:

SI_{2}-SI_{1}=688\\\frac{P\times 10\times 7}{100}-\frac{P\times 10\times 6}{100}=688\\\frac{70P-60P}{100}=688\\10P=68800\\P=6880

Thus, the principal value is Rs.6,880.

Answered by TRISHNADEVI
0

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \underline{ \mathfrak{  \:  \: We  \:  \: know  \:  \: that, \:  \: }}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bold{ \red{ \:  \: S.I. =  \frac{P \times r \times n}{100}  \:  \: }}} \\  \\  \text{Where, } \\  \:  \:  \:  \:  \:  \:  \text{S.I. = Simple Interest} \\  \:  \:  \:  \:  \:  \:  \:  \:  \text{ P = Principle } \\ \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \text{r = Rate of Interest } \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \text{n = Time}

 \mathfrak{ \: Suppose, \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \text{The sum of money = Rs. P}

 \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \red{ \:  \: In first condition, \:  \: }}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\   \:  \:  \:  \:  \:  \: \tt{Rate  \:  \: of  \:  \: interest, r_1 = 10\%} \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Time, n_1 = 6 \: years} \\  \\  \:  \:  \:  \:  \tt{S.I._1 =  \frac{P \times r_1 \times n_1}{100}  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ =  \frac{P \times 10 \times 6}{100} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ =  \frac{ \: 6P}{10}}

 \mathfrak{Again,} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \red{ \:  \: In second condition, \:  \: }}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\   \:  \:  \:  \:  \:  \: \tt{Rate  \:  \: of  \:  \: interest, r_2= 10\%} \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Time, n_2 = 7 \: years} \\  \\  \:  \:  \:  \:  \tt{S.I._2 =  \frac{P \times r_2 \times n_2}{100}  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ =  \frac{P \times 10 \times 7}{100} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ =  \frac{ \: 7P}{10}}

 \underline{\mathfrak{ \: Now, \: } }\\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \text{The difference between the simple}  \\  \text{interest \: for 6 years  and 7 years =  \red{Rs. 688}}

 \underline{ \bold{ \:  \: A.T.Q., \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{S.I._2 - S.I._1 = 688} \\  \\  \tt{ \implies  \frac{7P}{10} -  \frac{6P}{10}  = 688 } \\  \\  \tt{ \implies \:  \frac{7P - 6P}{10} = 688 } \\  \\  \tt{ \implies \:  \frac{P}{10}  = 688} \\   \\ \tt{ \implies \: P = 688 \times 10} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \: P = 6880} \\  \\  \tt{ \therefore \:  \red{The  \:  \: sum  \:  \: of  \:  \: money = \underline{ \:  Rs.  \: 6880 \: }}}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION\:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \red{ \:  \: In first condition, \:  \: }}}

 \tt{S.I._1  =  \frac{6P}{10} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ = Rs.( \frac{6 \times 6880}{10})} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ =Rs. \:  4128 \: }

 \mathfrak{And,} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \red{ \:  \: In second condition, \:  \: }}}

 \tt{S.I._2  =  \frac{7P}{10} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ =  Rs.(\frac{7 \times 6880}{10})} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ = Rs. \: 4816 \: }

 \tt{ \therefore \:  \: S.I._2 - S.I._1  = Rs.(4816 - 4128)}  \\ \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \: \tt{ = Rs. \: 688}

 \therefore \:  \: \text{The difference between the simple \: interest \: }  \\   \:  \:  \:  \:  \:  \:  \: \text{for 6 years  and 7 years =  \underline{\: Rs. 688\: }}

Similar questions