The simple interest on a certain sum of money for 2 years at 10% per annum is $800. What would be the
corresponding compound interest?
Answers
Given :
- Simple interest = Rs.800
- Time = 2 years
- Rate of interst = 10%
To Find :
- The corresponding compound interest
Solution :
We have ,
- Simple interst (SI) = Rs.800
- Time (T) = 2 years
- Rate of interst (R) = 10%
Simple interest is calculated by ,
Where ,
- P is principal
By substituting the values we have ,
Now , Comppund interst is calculated by ;
Where ,
- P is principal
- R is Rate of interest
Hence , The corresponding compound Interest is Rs.840
Answer:
Given :
Simple interest = Rs.800
Time = 2 years
Rate of interst = 10%
To Find :
The corresponding compound interest
Solution :
We have ,
Simple interst (SI) = Rs.800
Time (T) = 2 years
Rate of interst (R) = 10%
Simple interest is calculated by ,
\begin{gathered} \\ \star \: \boxed{\purple{\sf{SI = \dfrac{PTR}{100}}}}\end{gathered}
⋆
SI=
100
PTR
Where ,
P is principal
By substituting the values we have ,
\begin{gathered} \\ : \implies \sf \: 800 = \frac{P \times 2 \times 10}{100} \\ \\ \end{gathered}
:⟹800=
100
P×2×10
\begin{gathered} \\ : \implies \sf \: 800 \times 100 = P \times 20 \\ \\ \end{gathered}
:⟹800×100=P×20
\begin{gathered} \\ : \implies \sf \:P = \frac{800 \times 100}{20} \\ \\ \end{gathered}
:⟹P=
20
800×100
\begin{gathered} \\ : \implies \boxed{\pink{\sf{P = Rs.4000 }}} \\ \\ \end{gathered}
:⟹
P=Rs.4000
Now , Comppund interst is calculated by ;
\begin{gathered} \\ \star\boxed{\purple{\sf{CI = P\bigg(1+\dfrac{R}{100}\bigg)^{n} - P}}}\end{gathered}
⋆
CI=P(1+
100
R
)
n
−P
Where ,
P is principal
R is Rate of interest
\begin{gathered} \\ : \implies \sf \: CI = 4000 \bigg(1 + \frac{10}{100} \bigg)^{2} - 4000 \\ \\ \end{gathered}
:⟹CI=4000(1+
100
10
)
2
−4000
\begin{gathered} \\ : \implies \sf \:CI = 4000 \bigg( \frac{100 + 10}{100} \bigg)^{2} - 4000\\ \\ \end{gathered}
:⟹CI=4000(
100
100+10
)
2
−4000
\begin{gathered} \\ : \implies \sf \:CI = 4000 \bigg( \frac{110}{100} \bigg)^{2} - 4000 \\ \\ \end{gathered}
:⟹CI=4000(
100
110
)
2
−4000
\begin{gathered} \\ : \implies \sf \:CI = 4000 \bigg( \frac{110 \times 110}{100 \times 100} \bigg) - 4000 \\ \\ \end{gathered}
:⟹CI=4000(
100×100
110×110
)−4000
\begin{gathered} \\ : \implies \sf \: CI = 400 \bigg( \frac{12100}{10000}\bigg) - 4000\\ \\ \end{gathered}
:⟹CI=400(
10000
12100
)−4000
\begin{gathered} \\ : \implies \sf \:CI = 4000 \bigg( \frac{121}{100}\bigg) - 4000\\ \\ \end{gathered}
:⟹CI=4000(
100
121
)−4000
\begin{gathered} \\ : \implies \sf \:CI = 4840 - 4000\\ \\\end{gathered}
:⟹CI=4840−4000
\begin{gathered} \\ : \implies \boxed{\pink {\sf{ \: CI =Rs.840 }}} \: \bigstar \\ \\ \end{gathered}
:⟹
CI=Rs.840
★
Hence , The corresponding compound Interest is Rs.840