Math, asked by anmolkr135, 10 months ago

The Simple Interest on a sum of money for 2 years at 6% per annum
is Rs 900 . what will be the Compound Interest on that sum at the same rate and the same period ?​

Answers

Answered by Anonymous
25

Answer:

1248

Step-by-step explanation:

Let principal = x

Time = 2 years

Rate = 6%

Simple interest = 900 rupees

Formula for simple interest = ( PTR ) ÷ 100

=> 900 = (PTR/100)

=> 900 = (P * 2 * 6)/100

=> 900 * 100 = 12P

=> 90000 = 12P

=> P = 7500.

Thus, Principal = 7500.

We have to solve Amount.

A = Principal * ( 1 + ( r/100 ) ) ^ n

=> 7500 * ( 1 + ( 6 ÷ 100 ) ) ²

=> 7500 * ( 1 + ( 4 ÷ 50 ) ) ²

=> 7500 * (54/50) ²

=> 8748

Amount = Principle + interest

8748 = 7500 + Interest

Interest = 1248

Therefore, Compound interest = 1248

#Hope my answer helped you!

Answered by TRISHNADEVI
51

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \mathfrak{Suppose,} \\   \\ \mathtt{</p><p>The  \:  \: sum  \:  \: of \:  \:  money \:  \:  be \:  \:  Rs.  \:  P} \\  \\  \underline{ \mathfrak{ \: Given, \: }} \\  \\  \mathtt{Rate \:  \:  of \:  \:  Interest, r = 6\%} \\  \\  \mathtt{No.  \:  \:  of \:  \:  years, n = 2  \:  \: years.} \\  \\  \mathtt{S.I. = Rs. 900 }

 \underline{ \mathfrak{ \:  \: We \:  \:  know  \:  \:  that, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{S.I. =  \frac{P \times r \times n}{100} } \\  \\  \mathtt{\Longrightarrow \: 900 =  \frac{ P\times 6 \times 2}{100} } \\  \\ \mathtt{\Longrightarrow \:900 =  \frac{12P}{100}  } \\  \\ \mathtt{\Longrightarrow \:12P = 90000 } \\  \\ \mathtt{\Longrightarrow \:  P=  \frac{90000}{12} } \\  \\ \mathtt{\therefore \:  \:  \: P = 7500} \:

 \bold{Hence,} \\  \:  \:  \:  \:  \:  \:  \:  \bold{The \:   \: sum \:   \: of  \:  \: money = Rs. \:  7500}</p><p>

 \mathfrak{Now,} \\  \\  \underline{ \mathfrak{ \:  \: We  \:  \: know  \:  \: that, \:  \: }} \\  \\  \mathtt{C.I. = A - P } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = P(1 +  \frac{r}{100}) {}^{n}  - P } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ =P(1 +  \frac{r}{100} ) {}^{n}  - 1 } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = 7500 \times (1 +  \frac{6}{100}) {}^{2}  - 1 } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = 7500 \times ( \frac{106}{100} ) {}^{2}  - 1} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 7500 \times ( \frac{11236}{10000}  - 1)} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 7500 \times ( \frac{11236 - 10000}{10000} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \mathtt{ = 7500 \times  \frac{1236}{10000} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ = \frac{9,270,000}{10000}  } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 927}

 \bold{Hence,} \\  \:  \:  \:  \bold{Compound \:  \: interest \:  \: of \:  \: the \:   \: sum \:  \:  = Rs. \:  927}</p><p>

Similar questions