Math, asked by hnvbros, 15 hours ago

The simplest form of (4+5i)^2/(2+3i)^2

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\dfrac{\left(4+5\,i\right)^2}{\left(2+3\,i\right)^2}

=\dfrac{\left(4\right)^2+\left(5\,i\right)^2+2\cdot4\cdot5\,i}{\left(2\right)^2+\left(3\,i\right)^2+2\cdot2\cdot3\,i}

=\dfrac{16+25\left(i\right)^2+40\,i}{4+9\left(i\right)^2+12\,i}

=\dfrac{16-25+40\,i}{4-9+12\,i}

=\dfrac{-9+40\,i}{-5+12\,i}

=\dfrac{\big(-9+40\,i\big)\big(-5-12\,i\big)}{\big(-5+12\,i\big)\big(-5-12\,i\big)}

=\dfrac{45-200\,i+108\,i-480\,i^2}{\left(-5\right)^2+\left(12\right)^2}

=\dfrac{45-72\,i+480}{25+144}

=\dfrac{525-72\,i}{165}

=\dfrac{525}{165}-\dfrac{72}{165}\,i

=\dfrac{105}{33}-\dfrac{24}{55}\,i

Similar questions
Math, 8 months ago