Math, asked by deepak14397, 1 year ago

the simplest rationalising factor of 2√5-√3 is



Answers

Answered by rohithnimish123
24

Answer:2√5+√3

Step-by-step explanation:

2√5-√3 × 2√5+√3=4√5√5 + 2√5√3 - 2√5√3-√3√3

                               =4*5 - 3        (2√5√3 & -2√5√3 get cancelled)

                               =20-3

                               =17

               ∴ It is rationalized

                       Therefore the simplest rationalizing factor of

                            2√5-√3 is  2√5+√3.

                                                                               

Answered by qwsuccess
3

Given: 2\sqrt{5} - \sqrt{3}

To find: Rationalisation factor of the given expression

Solution:  

Rationalisation factor is an irrational number that is multiplied with the given irrational expression to make it free from square roots.

Now, the rationalisation factor of a\sqrt{b} \ - \ \sqrt{c} will be a\sqrt{b} \ + \ \sqrt{c}

(a\sqrt{b} \ - \ \sqrt{c} )(a\sqrt{b} \ + \ \sqrt{c}) = (a\sqrt{b}) ^{2} \ - \ (\sqrt{c}) ^{2} = a^{2} b - c, which is rational (free from roots)

Similarly,

(2\sqrt{5} - \sqrt{3}) (2\sqrt{5} + \sqrt{3}) = (2\sqrt{5} )^{2} - (\sqrt{3}) ^{2}

4(5) - 3 = 20 - 3 = 17, which is rational

Hence, rationalisation factor of  2\sqrt{5} - \sqrt{3}  is  2\sqrt{5} + \sqrt{3}.

Similar questions