Math, asked by SmartRishabh, 1 year ago

the simplest rationalising factor of 3√500

Answers

Answered by pinquancaro
165

Answer:

The rationalizing factor of \sqrt[3]{500}  is 2^{\frac{1}{3}}

Step-by-step explanation:

Given : Number \sqrt[3]{500}

To find : The simplest rationalizing factor of the given number?

Solution :  

First we find the cube root of the number 500,

\sqrt[3]{500}

=(500)^{\frac{1}{3}}

=(5^3\times 2^2)^{\frac{1}{3}}

=(5^{\frac{3}{3}}\times 2^{\frac{2}{3}})

=(5\times 2^{\frac{2}{3}})

So, The rationalizing factor of \sqrt[3]{500}  is 2^{\frac{1}{3}}

As =(500)^{\frac{1}{3}}\times 2^{\frac{1}{3}}

=(5\times 2^{\frac{2}{3}})\times 2^{\frac{1}{3}}

=5\times 2^{\frac{2}{3}+\frac{1}{3}}

=5\times 2^{1}

=5\times 2

=10

10 is a rational number.

Therefore, The rationalizing factor of \sqrt[3]{500}  is 2^{\frac{1}{3}}

Answered by mysticd
123

Answer:

 Rationalising \: factor \: of \: \sqrt[3]{500}\\=5\times 2^{\frac{2}{3}} \: is 2^{\frac{1}{3}}

Step-by-step explanation:

 Write \: the \: least \: form \: given \: number\\ \sqrt[3]{500}\\=\sqrt[3]{(5\times 5\times 5)\times 2 \times2}\\=5\sqrt[3]{2^{2}}\\=5\times 2^{\frac{2}{3}}

 Rationalising \: factor \: of \: \sqrt[3]{500}\\=5\times 2^{\frac{2}{3}} \: is 2^{\frac{1}{3}}

Product\: of \: 5\times 2^{\frac{2}{3}} \times 2^{\frac{1}{3}} = 5\times 2^{\frac{2}{3}+\frac{1}{3}}\\=5\times 2^{\frac{2+1}{3}}\\=5\times 2^{\frac{3}{3}}\\=5\times 2\\=10 \: (Rational \: number )

•••♪

Similar questions