The simplified value of (a²+b²)(a²+b²)- (a²-b²)(a²-b²) is --------.
2a²b²
2a⁴ + 2b⁴ - 2a²b²
4a²b²
none of these
Answers
Answered by
0
Answer:
correct answer
Answered by
2
Answer :
The simplified value of (a²+b²)(a²+b²)- (a²-b²)(a²-b²) is 4a²b².
Option c. [ 4a²b² ] is the correct answer.
Step-by-step explanation :
⟹ ( a² + b² ) ( a² + b² ) - ( a² - b² ) ( a² - b² )
⟹ ( a² ) ( a² ) + ( a² ) ( b² ) + ( b² ) ( a² ) + ( b² ) ( b² ) + - a⁴ + 2a²b² + - b⁴
⟹ a⁴ + a²b² + a²b² + b⁴ + - a⁴ + 2a²b² + - b⁴
By combining the like terms
⟹ ( a⁴ - a⁴ ) + ( a²b² + a²b² + 2a²b² ) + ( b⁴ - b⁴ )
Eliminating + a⁴ and - a⁴
⟹ ( a²b² + a²b² + 2a²b² ) + ( b⁴ - b⁴ )
Eliminating + b⁴ - b⁴
⟹a²b² + a²b² + 2a²b²
⟹2a²b² + 2a²b²
⟹ 4a²b²
Hence, the required number is 4a²b².
Similar questions