Math, asked by soumya1063, 10 months ago

the simplified value of expression (a+b-c)^2+2(a+b-c)(a-b+c)+(a-b+c)^2 is​

Answers

Answered by yogeshkumar206
1

Answer:

(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3(a^2+b^2+c^2)+2(ac+ab-bc)(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=3(a

2

+b

2

+c

2

)+2(ac+ab−bc)

Step-by-step explanation:

Given : Expression (a+b+c)^2+(a-b+c)^2+(a+b-c)^2(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

To find : Simplify the expression ?

Solution :

We know that,

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ac

Similarly solve the second term,

(a-b+c)^2=a^2+(-b)^2+c^2+2a(-b)+2(-b)c+2ac(a−b+c)

2

=a

2

+(−b)

2

+c

2

+2a(−b)+2(−b)c+2ac

(a-b+c)^2=a^2+b^2+c^2-2ab-2bc+2ac(a−b+c)

2

=a

2

+b

2

+c

2

−2ab−2bc+2ac

Similarly solve the third term,

(a+b+c)^2=a^2+b^2+(-c)^2+2ab+2b(-c)+2a(-c)(a+b+c)

2

=a

2

+b

2

+(−c)

2

+2ab+2b(−c)+2a(−c)

(a+b-c)^2=a^2+b^2+c^2+2ab-2bc-2ac(a+b−c)

2

=a

2

+b

2

+c

2

+2ab−2bc−2ac

Substitute all in the expression,

(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ac+a

2

+b

2

+c

2

−2ab−2bc+2ac+a

2

+b

2

+c

2

+2ab−2bc−2ac

(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3a^2+3b^2+3c^2+2ac+2ab-2bc(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=3a

2

+3b

2

+3c

2

+2ac+2ab−2bc

(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3(a^2+b^2+c^2)+2(ac+ab-bc)(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=3(a

2

+b

2

+c

2

)+2(ac+ab−bc)

Similar questions