Math, asked by B4C, 4 months ago

The simplified value of (give full explanation)​

Attachments:

Answers

Answered by Flaunt
189

Question

\sf\large \dfrac{\bigg(  { \dfrac{ - 3}{4}\bigg) }^{4} \times  \dfrac{125}{27}  }{ { \bigg(\dfrac{5}{3}\bigg) }^{2}  \times  \bigg(\dfrac{9}{16}\bigg )}

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf\longmapsto\dfrac{\bigg(  { \dfrac{ - 3}{4}\bigg) }^{4} \times  \dfrac{ {5}^{3} }{ {3}^{3} }  }{ { \bigg(\dfrac{5}{3}\bigg) }^{2}  \times\bigg (\dfrac{ {3}^{2} }{ {4}^{2} }\bigg )}

\sf \longmapsto \dfrac{ { \bigg(\dfrac{ - 3}{4}\bigg )}^{4}  \times  {\bigg (\dfrac{5}{3}\bigg) }^{3} }{ {\bigg( \dfrac{5}{3}\bigg )}^{2}  \times  {\bigg( \dfrac{3}{4}\bigg )}^{2} }

Concepts :

If bases are same then their power gets added in multiplication and gets substracted in division.

  \sf \boxed{ \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}}

 \sf \boxed{  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}}

\sf \large \longmapsto  { \bigg(\dfrac{ - 3}{4}\bigg) }^{4 - 2}   \times  { \bigg(\dfrac{5}{3} \bigg)}^{3 - 2}

\sf  \large\longmapsto  { \bigg(\dfrac{ - 3}{4} \bigg)}^{2}  \times  \dfrac{5}{3}

\sf \longmapsto \large \dfrac{9}{16}  \times  \dfrac{5}{3}  =  \dfrac{3}{16}  \times 5 =  \dfrac{15}{16}

Answered by mandeep669
4

Answer:

its your answer

Step-by-step explanation:

mark me brainliest

Attachments:
Similar questions