Math, asked by ZoomSTER5280, 1 year ago

The simplified value of log4√{729 3√(9-1.27-4/3)}is



a) log3

b)log2

c)log1/2

d) none of these

Answers

Answered by DevyaniKhushi
62

HOPEFULLY THE ATTACHMENT WILL HELP YOU.......

Attachments:
Answered by pinquancaro
15

Option 1 - \log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}}=\log 3

Step-by-step explanation:

Given : Expression \log[\sqrt{729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}

To find : Simplify the expression ?

Solution :

Expression \log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}

We simplify the bracket term first,

(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}=(3^{-2}3^{-\frac{4\times 3}{3}})^{\frac{1}{3}}}}

(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}=(3^{-2}3^{-4})^{\frac{1}{3}}

(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}=(3^{-6})^{\frac{1}{3}}

(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}=3^{-2}

(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}=\frac{1}{9}

Substitute back,

\log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}}=\log(729\times \frac{1}{9})^{\frac{1}{4}

\log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}}=\log[81]^{\frac{1}{4}

\log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}}=\log[3^4]^{\frac{1}{4}

\log[729(9^{-1}27^{-\frac{4}{3}})^{\frac{1}{3}}}}]^{\frac{1}{4}}=\log 3

Therefore, option a is correct.

#Learn more

Simplify: 13375 x (-729).​

https://brainly.in/question/10887138

Similar questions