The sine of the angle between the straight line (x-2)/(3)-(y-3)/(4)=(z-4)/(5) and the plane 2x-2y+1-5 is
Answers
Appropriate Question :-
The sine of the angle between the straight line
is ______
Given equation of line is
So, direction ratios of the line be (3, 4, 5).
So, in vector form, direction ratio of the line is
Also, given equation of plane is
So, normal to the surface of plane is (2, - 2, 1).
So, normal vector to the plane is
We know, Angle between the line and plane is given by
So,
Now,
Now,
So, on substituting the values, we get
Step-by-step explanation:
Appropriate Question :-
The sine of the angle between the straight line
\begin{gathered}\rm \: \dfrac{x - 2}{3} = \dfrac{y - 3}{4} = \dfrac{z - 4}{5} \: and \: plane \: 2x - 2y + z - 5 = 0 \\ \end{gathered}
3
x−2
=
4
y−3
=
5
z−4
andplane2x−2y+z−5=0
is ______
\large\underline{\sf{Solution-}}
Solution−
Given equation of line is
\begin{gathered}\rm \: \dfrac{x - 2}{3} = \dfrac{y - 3}{4} = \dfrac{z - 4}{5} \\ \end{gathered}
3
x−2
=
4
y−3
=
5
z−4
So, direction ratios of the line be (3, 4, 5).
So, in vector form, direction ratio of the line is
\begin{gathered}\rm \: \vec{b} = 3\hat{i} + 4\hat{j} + 5\hat{k} \\ \end{gathered}
b
=3
i
^
+4
j
^
+5
k
^
Also, given equation of plane is
\begin{gathered}\rm \: 2x - 2y + z - 5 = 0 \\ \end{gathered}
2x−2y+z−5=0
So, normal to the surface of plane is (2, - 2, 1).
So, normal vector to the plane is
\begin{gathered}\rm \: \vec{n} = 2\hat{i} - 2\hat{j} + \hat{k} \\ \end{gathered}
n
=2
i
^
−2
j
^
+
k
^
We know, Angle between the line and plane is given by
\begin{gathered}\boxed{ \rm{ \:sin \theta \: = \: \dfrac{\vec{b} \: . \: \vec{n}}{ |\vec{b}| \: |\vec{n}| } \: }} \\ \end{gathered}
sinθ=
∣
b
∣∣
n
∣
b
.
n
So,
\begin{gathered}\rm \: \vec{b}.\vec{n} \\ \end{gathered}
b
.
n
\begin{gathered}\rm \: = \: (3\hat{i} + 4\hat{j} + 5\hat{k}).(2\hat{i} - 2\hat{j} + \hat{k}) \\ \end{gathered}
=(3
i
^
+4
j
^
+5
k
^
).(2
i
^
−2
j
^
+
k
^
)
\begin{gathered}\rm \: = \: 6 - 8 + 5 \\ \end{gathered}
=6−8+5
\begin{gathered}\rm \: = \: 3 \\ \end{gathered}
=3
Now,
\begin{gathered}\rm \: |\vec{b}| \\ \end{gathered}
∣
b
∣
\begin{gathered}\rm \: = \: |3\hat{i} + 4\hat{j} + 5\hat{k}| \\ \end{gathered}
=∣3
i
^
+4
j
^
+5
k
^
∣
\begin{gathered}\rm \: = \: \sqrt{ {3}^{2} + {4}^{2} + {5}^{2} } \\ \end{gathered}
=
3
2
+4
2
+5
2
\begin{gathered}\rm \: = \: \sqrt{9 + 16 + 25} \\ \end{gathered}
=
9+16+25
\begin{gathered}\rm \: = \: \sqrt{50} \\ \end{gathered}
=
50
\begin{gathered}\rm \: = \: 5 \sqrt{2} \\ \end{gathered}
=5
2
Now,
\begin{gathered}\rm \: |\vec{n}| \\ \end{gathered}
∣
n
∣
\begin{gathered}\rm \: = \: |2\hat{i} - 2\hat{j} + \hat{k}| \\ \end{gathered}
=∣2
i
^
−2
j
^
+
k
^
∣
\rm \: = \: \sqrt{ {(2)}^{2} + {( - 2)}^{2} + {1}^{2} } =
(2)
2
+(−2)
2
+1
2
\begin{gathered}\rm \: = \: \sqrt{4 + 4 + 1} \\ \end{gathered}
=
4+4+1
\begin{gathered}\rm \: = \: \sqrt{9} \\ \end{gathered}
=
9
\begin{gathered}\rm \: = \: 3 \\ \end{gathered}
=3
So, on substituting the values, we get
\begin{gathered}\rm \: sin \theta \: = \: \dfrac{3}{5 \sqrt{2} \times 3} \\ \end{gathered}
sinθ=
5
2
×3
3
\begin{gathered} \red{\rm\implies \:\boxed{ \rm{ \:\rm \: sin \theta \: = \: \dfrac{1}{5 \sqrt{2}} \: }}} \\ \end{gathered}
⟹
sinθ=
5
2
1