Math, asked by Kriaplarmy7, 3 months ago

The slant height and base diameter of a conical tomb are 25m and 14m respectively.Find its curved surface area.

Answers

Answered by EnchantedBoy
20

\bigstar\bf\underline{\underline{Given:-}}

  • The slant height and base diameter of a conical tomb are 25m and 14m

\bigstar\bf\underline{\underline{To \ find:-}}

  • Its curved surface area.

\bigstar\bf\underline{\underline{Solution:-}}

Let, curved surface area of tomb = πrl

Given slant height = l = 25cm

Radius = \sf \frac{14}{2} = 7cm

Curved surface area of tomb = πrl

\implies(\sf\frac{22}{7}\times 7\times 25)m^{2}

\implies(\sf22\times 1\times 25)m^{2}

\implies\bf\underline{550m^{2}}

Therefore, the curved surface area = 550m².

Answered by ITZBFF
44

 \: \: \boxed{\boxed{\sf{\mapsto \: Firstly \: Know \: the \: Formula}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\mathcal \blue{C.S.A \:  \:  of  \: cone : \:  \pi \: r \: l }} \\  \\  \mathcal \blue{r : } \mathsf{radius \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\ \mathcal \blue{l : } \mathsf{slant \: height}

\mathsf\red{Given : \: }

\mathsf{Slant \: height \: of \: cone \: = \: 25 \: m}

\mathsf{Diameter \: of \: cone \: = 14 \: m}

\mathsf{\therefore \: \: radius \: = \: \frac{d}{2}} \\

\mathsf{radius \: of \: cone \: = \: \frac{14}{2}} \\

\mathsf{radius \: of \: cone \: = \: 7 \: m}

\mathsf{}

\mathcal\red{C.S.A \: \: of \: cone \: = \: \pi.r.l} \\

\mathsf{= \: \frac{22}{7} \times 7 \times 25} \\

 \mathsf{ =  \:  \frac{22}{ \cancel{7}}  \times  \cancel{7} \times 25} \\  \\

\mathsf{= \: 22 \times 25}

\mathsf{= 550}

\boxed{\mathcal\red{\therefore \: \: C.S.A. \: \: = \: 550 \: {m}^{2}}} \\

Similar questions