Math, asked by dishadonthula15, 1 month ago

The slant height of a cone is 14 m and its curved surface is 264 m2 . Find the radius of the base of a cone.​

Answers

Answered by Anonymous
27

Answer:

Given :-

  • The slant height of a cone is 14 m and its curved surface area is 264 m².

To Find :-

  • What is the radius of the base of a cone.

Formula Used :-

\clubsuit Curved Surface Area or CSA of Cone Formula :

\mapsto \sf\boxed{\bold{\pink{C.S.A_{(Cone)} =\: {\pi}rl}}}

where,

  • C.S.A = Curved Surface Area
  • π = pie or 22/7
  • r = Radius
  • l = Slant Height

Solution :-

Given :

  • Slant Height (l) = 14 m
  • Curved Surface Area (C.S.A) = 264

According to the question by using the formula we get,

\longrightarrow \sf \dfrac{22}{\cancel{7}} \times r \times {\cancel{14}} =\: 264

\longrightarrow \sf 22 \times r \times 2 =\: 264

\longrightarrow \sf r =\: \dfrac{264}{22 \times 2}

\longrightarrow \sf r =\: \dfrac{\cancel{264}}{\cancel{44}}

\longrightarrow \sf r =\: \dfrac{6}{1}

\longrightarrow \sf\bold{\red{r =\: 6\: m}}

{\small{\bold{\underline{\therefore\: The\: radius\: of\: the\: base\: of\: a\: cone\: is\: 6\: m\: .}}}}

Answered by Anonymous
128

 \huge \sf {\underbrace{\underline{Elucidation:-}}}

━═━═━═━═━═━═━═━═━═━═━═━═━═━

 \rm \red {\underline{\underline{Provided\: that:}}}

➻The slant height of a cone(l)=14m

➻Curved surface area of the cone(C.S.A)=264 {m^{2}}

━═━═━═━═━═━═━═━═━═━═━═━═━═━

 \rm \blue {\underline{\underline{To\: be\: Determined:}}}

➻ Radius of the base of a cone(r)=?

━═━═━═━═━═━═━═━═━═━═━═━═━═━

 \rm \pink {\underline{\underline{We\: know:}}}

\tiny \tt \green {\fbox{Curved\:surface\:area\:of\:a\:cone(C.S.A)=πrl}}

━═━═━═━═━═━═━═━═━═━═━═━═━═━

➻We've been given curved surface area (C.S.A) and slant height (l).

➻Supplanting those values in the formula,

 \colon \mapsto \tt{C.S.A=πrl}

\large \colon \mapsto \tt {264m^{2}=\frac{22}{7}\times r\times 14m }

\large \colon \mapsto \tt {r=\frac{264m^{2}\times{\cancel{ 7}}}{22\times {\cancel{14}}m_{2} }}

\large \colon \mapsto \tt {r=\frac{264m^{2}}{22\times 2m }}

\large \colon \mapsto \tt {r=\frac{\cancel{264m^{2}}^{6}}{\cancel{44m} }}

 \colon \implies \green {\fbox{r=6m}}

━═━═━═━═━═━═━═━═━═━═━═━═━═━

 \rm \purple {\underline{\underline{Thereupon,}}}

➻Radius of the base of a cone(r)=6m

━═━═━═━═━═━═━═━═━═━═━═━═━═━

Similar questions