Math, asked by vadiveluvasantha, 2 months ago

the slope of the line normal to the curve f(x) 2cos4x at x= pi/12 is​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y = f(x) = 2 \cos(4x)

 \implies \frac{dy}{dx}  =  - 8 \sin(4x)  \\

 \implies \frac{dy}{dx} _{x =  \frac{\pi}{12} } =  - 8 \sin( \frac{\pi}{3} )  =  - 4 \sqrt{3}  \\

At

 x= \frac{\pi}{12}, y=1\\

Equation of normal:

(y - 1). (\frac{dy}{dx} )_{x = 1}  + (x -  \frac{\pi}{12} ) = 0

(y - 1).( - 4 \sqrt{3}  )+ (x -  \frac{\pi}{12} ) = 0

 \implies - 4 \sqrt{3} y  +  4 \sqrt{3}  + x -  \frac{\pi}{12}  = 0 \\

 \implies - 4 \sqrt{3} y   + x+  4 \sqrt{3}   -  \frac{\pi}{12}  = 0 \\

Similar questions