Math, asked by vadiveluvasantha, 3 months ago

the slope of the line normal to the curve f(x) 2cos4x at x= pi/12 is​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:f(x) = 2 \: cos4x

Let we assume that,

\rm :\longmapsto\:y = 2 \: cos4x

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} 2 \: cos4x

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \boxed{ \sf{ \:\dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx} \: f(x) }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  =2 \: \dfrac{d}{dx} \: cos4x

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \boxed{ \sf{ \:\dfrac{d}{dx}cosx =  -  \: sinx }}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = -  \: 2 \: sin \: 4x \: \dfrac{d}{dx} \:4x

\rm :\longmapsto\:\dfrac{dy}{dx}  = -  \: 8 \: sin \: 4x \: \dfrac{d}{dx} \:x

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \boxed{ \sf{ \:\dfrac{d}{dx}x =  \: 1 }}}

\rm :\longmapsto\:\dfrac{dy}{dx}  = -  \: 8 \: sin \: 4x \:  \times 1

\rm :\longmapsto\:\dfrac{dy}{dx}  = -  \: 8 \: sin \: 4x \:

Therefore,

Slope of tangent is given by

\rm :\longmapsto\:\dfrac{dy}{dx}_{ \:  \: x  \: =  \: \dfrac{\pi}{12} }  = -  \: 8 \: sin \: {\bigg(\dfrac{4\pi}{12} \bigg) }\:

\rm :\longmapsto\:\dfrac{dy}{dx}_{ \:  \: x  \: =  \: \dfrac{\pi}{12} }  = -  \: 8 \: sin \: {\bigg(\dfrac{\pi}{3} \bigg) }\:

\rm :\longmapsto\:\dfrac{dy}{dx}_{ \:  \: x  \: =  \: \dfrac{\pi}{12} }  = -  \: 8 \: \times  \: {\bigg(\dfrac{ \sqrt{3} }{2} \bigg) }\:

\rm :\longmapsto\:\dfrac{dy}{dx}_{ \:  \: x  \: =  \: \dfrac{\pi}{12} }  = -  4 \sqrt{3}

Therefore,

\rm :\longmapsto\:Slope \: of \: normal = \dfrac{ - 1}{Slope \: of \: tangent}

\rm :\longmapsto\:Slope \: of \: normal = \dfrac{ - 1}{\dfrac{dy}{dx}_{ \:  \: x  \: =  \: \dfrac{\pi}{12} }}

\rm :\longmapsto\:Slope \: of \: normal = \dfrac{ - 1}{ - 4 \sqrt{3} }

\bf :\longmapsto\:Slope \: of \: normal = \dfrac{ 1}{ 4 \sqrt{3} }

Additional Information :-

Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

 \red{ \boxed{ \sf{ \: Slope \: of \: tangent \:  =  \:  \bigg(\dfrac{dy}{dx} \bigg)_P}}}

and

 \red{ \boxed{ \sf{ \: Slope \: of \: normal\:  =  \:   \frac{ - 1}{\bigg(\dfrac{dy}{dx} \bigg)_P} }}}

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

Similar questions