Math, asked by hkbrar, 6 months ago

the slope of the normal to the curve x=1/t ,y=2t at t=2.​

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\textsf{Curve is}

\mathsf{x=\dfrac{1}{t},\;y=2t}

\underline{\textsf{To find:}}

\textsf{Slope of normal to the curve at t=2}

\underline{\textsf{Solution:}}

\mathsf{x=t^{-1}}

\mathsf{\dfrac{dx}{dt}=-t^{-2}}

\mathsf{y=2t}

\mathsf{\dfrac{dy}{dt}=2}

\textsf{Now}

\mathsf{\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}}

\mathsf{\dfrac{dy}{dx}=\dfrac{2}{-t^{-2}}}

\mathsf{\dfrac{dy}{dx}=-2t^2}}

\textsf{Slope of tangent at t=2}

\mathsf{m=(\dfrac{dy}{dx})_{t=2}}

\mathsf{m=-2(2)^2}

\mathsf{m=-8}

\underline{\textsf{Slope of normal}}

\mathsf{=\dfrac{-1}{m}}

\mathsf{=8}

\underline{\textsf{Answer:}}

\textsf{Slope of normal of the curve at t=2 is 8}

Similar questions