Math, asked by jiyaarora984, 1 month ago

The slope of the normal to the curve x=1/t ,y=2t at t=2.​

Answers

Answered by kadarisrikarrao
0

Answer:

It x=t

2

and y=2t then equation of normal at t=1 is -

X+Y-3=0

Answered by ItzAyushi03
6

\large{\underline{\underline{\textsf{\textbf{\purple{Given:}}}}}}

{ }

Curve Is :

  • \sf{x\:=\:{\dfrac{1}{t}}}

  • \sf{y\:=\:2t}

{ }

\large{\underline{\underline{\textsf{\textbf{\purple{Find:}}}}}}

{ }

  • Slope of the normal to the curve at t = 2.

{ }

\large{\underline{\underline{\textsf{\textbf{\purple{Solution:}}}}}}

{ }

  • \sf{x\:=\:t}^{-1}

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\:\sf{\dfrac{dx}{dt}}\:{=\:-\:t}^{-2}

{ }

  • \sf{y\:=\:2t}

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\:\sf{\dfrac{dy}{dt}}\:{=\:2}

{ }

Now,

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\:\sf{\dfrac{dy}{dx}}\:=\:\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\:\sf{\dfrac{dy}{dx}}\:=\:{-2t}^{2}

{ }

Then,

{ }

  • Slope of the normal to the curve at t = 2.

{ }

\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{m\:=\:\bigg (\:{\dfrac{dy}{dx}}\:\bigg )\:_t\:_=\:_2}

{ }

\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{m\:=\:-\:2\:{(2)}^{2}}

{ }

\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{m\:=-8}

{ }

  • Slope of Normal :

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{-1}{m}}

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{8}

{ }

\:\:\:\:\:\:\:\therefore\:{\underline{\sf{Slope \:of\: the\: Normal\: to \:the\: Curve\: at\: t \:=\: 2\: is \:{\textsf{\textbf{8}}}}}}.

{ }

Similar questions