Math, asked by shubhamjaju03, 9 hours ago

The slope of the perpendicular to the tangent to curve y = x2 – 5 at x = 1 is​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{Curve\;is\;y=x^2-5}

\underline{\textbf{To find:}}

\textsf{Slope of perpendicular to the tangent to the given}

\textsf{curve at x=1}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;\;y=x^2-5}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=2x}

\textbf{Slope of tangent at x=1}

\mathsf{=\left(\dfrac{dy}{dx}\right)_{x=1}}

\mathsf{=2(1)}

\mathsf{=2}

\mathsf{Slope\;of\;normal=\dfrac{-1}{Slope\;of\;tangent}}

\implies\boxed{\mathsf{Slope\;of\;normal=\dfrac{-1}{2}}}

\underline{\textbf{Find more:}}

Find the angle of tangent drawn

to the curve y=3x^2-7x +5 at the point (1,1)with the x axis​

https://brainly.in/question/22812663  

Answered by anbukodij
1

Answer:

y=x^2-5

dy/dx=2x

x=1

dy/dx=2

slope of normal=-1/slope of tangent

=-1/2

Similar questions